Hadronic Interaction Models and Accelerator Data

Similar documents
How air shower and heavy ion physics benefit from each other

Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II

pa at the LHC and Extensive Air Shower Development

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

Cosmic Ray Interaction Models: Overview

Studies on UHECR composition and hadronic interactions by the Pierre Auger Observatory

High Energy Cosmic Ray Interactions

On the measurement of the proton-air cross section using air shower data

Ultra-High Energy Cosmic Rays (III)

The LHCf data hadronic interactions and UHECR showers. Paolo Lipari LHCf meeting Catania, 6th july 2011

QCD at Cosmic energies VII

Hadronic Interactions and Cosmic Ray Physics

Modelling MB pp,pa Collisions at the LHC and in Cosmic Rays : EPOS case

DIFFERENT H.E. INTERACTION MODELS

Science case for recording protonoxygen collisions at the LHC

EPOS 2 and LHC Results

1 The pion bump in the gamma reay flux

UHECR and HADRONIC INTERACTIONS. Paolo Lipari Searching for the origin of Cosmic Rays Trondheim 18th June 2009

Cosmic Ray Interaction Models: an Overview

Theory of Hadronic Interactions and Its Application to Modeling of Cosmic Ray Hadronic Showers

Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

Collective flow in (anti)proton-proton collision at Tevatron and LHC

Measurement of air shower maxima and p-air cross section with the Telescope Array

arxiv: v1 [astro-ph.he] 25 Mar 2015

LHC data and extensive air showers

OVERVIEW OF THE RESULTS

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

QCD at the Tevatron: The Production of Jets & Photons plus Jets

seasonal variations of atmospheric leptons as a probe for charm production

Diffraction Physics at LHCb

Latest results and perspectives of the KASCADE-Grande EAS facility

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

arxiv: v1 [hep-ph] 19 Nov 2018

and small-x QCD Adrian Dumitru, ITP, Frankfurt University, 2005 CTEQ summer school Collaborators: H.J. Drescher and M. Strikman

Review of LHCb results on MPI, soft QCD and diffraction

PRODUCING HARD PROCESSES REGARDING THE COMPLETE EVENT: THE EPOS EVENT GENERATOR

On the Combined Analysis of Muon Shower Size and Depth of Shower Maximum

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision

Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above ev and Composition Implications

The average longitudinal air shower profile: exploring the shape information

A CORSIKA study on the influence of muon detector thresholds on the separability of primary cosmic rays at highest energies

Air Shower Measurements from PeV to EeV

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

Antibaryon to Baryon Production Ratios in DPMJET-III. in Pb-Pb and p-p collision at LHC energies of the DPMJET-III Monte Carlo

Recent QCD results from ATLAS

TeV energy physics at LHC and in cosmic rays

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion

Flow in p-pb collisions at 5 TeV?

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling

Status of diffractive models. Robert Ciesielski [The Rockefeller University]

The air-shower experiment KASCADE-Grande

SOFT QCD AT ATLAS AND CMS

The KASCADE-Grande Experiment

2. HEAVY QUARK PRODUCTION

Hadronic Interactions and Cosmic Ray Particle Physics

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy

Mini-Bias and Underlying Event Studies at CMS

arxiv: v1 [hep-ex] 18 May 2015

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Jet Physics with ALICE

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Mass Composition Study at the Pierre Auger Observatory

The Quark-Gluon Plasma and the ALICE Experiment

Standard Model of Particle Physics SS 2012

Constraints on the energy spectra of charged particles predicted in some model interactions of hadrons with help of the atmospheric muon flux

Review of accelerator data of relevance to air shower simulations

LHC MPI and underlying event results

Anisotropy studies with the Pierre Auger Observatory

Thermodynamical String Fragmentation

arxiv: v1 [hep-ex] 9 Jan 2019

Precision QCD at the Tevatron. Markus Wobisch, Fermilab for the CDF and DØ Collaborations

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Some Thoughts on Laboratory Astrophysics for UHE Cosmic Rays. Pierre Sokolsky University of Utah SABRE Workshop SLAC, March, 2006

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC

Heavy ion physics at LHCb

PoS(IHEP-LHC-2011)008

Hadronic interactions of ultra-high energy cosmic rays

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Exclusive Central π+π- Production in Proton Antiproton Collisions at the CDF

arxiv: v1 [astro-ph.he] 8 Apr 2015

Recent results on soft QCD topics from ATLAS

Phenomenology of prompt photon production. in p A and A A collisions

Cosmic Rays in large air-shower detectors

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

Quarkonia and open heavy-flavour production in high multiplicity pp collisions

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Heavy flavour production at RHIC and LHC

Longitudinal profile of Nµ/Ne in extensive air showers: Implications for cosmic rays mass composition study

The Lund Model. and some extensions. Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE Lund, Sweden

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Tevatron Energy Scan. Energy Dependence of the Underlying Event. Rick Field Craig Group & David Wilson University of Florida

Transcription:

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Hadronic Interaction Models and Accelerator Data Ralph Engel, Dieter Heck, Sergey Ostapchenko, Tanguy Pierog, and Klaus Werner

Outline Introduction: Color flow and strings String fragmentation - Baryon-antibaryon production - Popcorn effect String configurations of different models - Configurations and data - High-density effects Model predictions and comparison with data - Accelerator data - Air shower predictions

Color flow and strings (i) Generic scattering diagram di-quark quark proton gluon proton quark di-quark

Color flow and strings (ii) Generic scattering diagram QCD color string di-quark quark proton gluon proton quark di-quark

quark diquark QCD string fragmentation meson meson baryon Chain of hadrons: large long. momenta near ends small trans. momenta

String fragmentation: baryon pairs diquark - anti-diquark pair leading meson leading baryon baryon anti-baryon pair

String fragmentation: popcorn effect diquark Diquark splitting: improved description of leading meson and baryon data leading meson baryon leading meson

SIBYLL minimum string configuration quark proton diquark proton quark diquark Special fragmentation function for leading diquarks needed for description of data

QGSJET minimum string configuration proton proton Generation of sea quark anti-quark pair and leading/excited hadron

EPOS minimum string configuration proton proton Generation of sea quark pair for each string Micro-canonical decay of remnants to hadrons

Data and two-string models dn/dy Two-string models: very successful long-range correlations charge distribution delayed threshold for baryon pair production Rapidity y (Capella et al., Physics Reports 994)

Examples of comparisons with data dn/d! 5 4 3 E cm = 630 GeV Simulations with P238 (Harr et al.) trigger DPMJET II.55 nexus 2 QGSJET0 SIBYLL 2. Harr et al. 0 5 p p # p X, NAL Hydrogen Bubble Chamber SIBYLL 2. QGSjet 2 E lab = 405 GeV, x000 0 4 dn/d! 0 5 4 0 2 4 6 8 0 E cm = 900 GeV Simulations with UA5 trigger! DPMJET II.55 nexus 2 QGSJET0 SIBYLL 2. d!/dx F (mb) 0 3 E lab = 303 GeV, x00 E lab = 205 GeV, x0 3 UA5 0 2 2 E lab = 02 GeV 0 0 2 4 6 8 0! 0 0 0.2 0.4 0.6 0.8 x F = 2 E p /"s

EPOS: string contributions remnant contributions dn/dy dn/dy y SPS low SPS high dn/dy y RHIC y dn/dy LHC y Only model for description of multi-strange baryon production (next slides)

EPOS remnant model and data (i) NA49 data (Liu et al., PRD 2003)

EPOS remnant model and data (ii) NA49 data (Liu et al., PRD 2003)

Two-gluon scattering: SIBYLL proton proton Kinematics etc. given by parton densities and perturbative QCD Two strings stretched between quark pairs from gluon fragmentation

Two-gluon scattering: QGSJET proton Two strings with high-pt kinks proton Sea quark pairs form end of strings, generated from model distribution dp dx x

Two-gluon scattering: EPOS proton Two strings with high-pt kinks proton Independent sea quarks form string ends

SIBYLL: high parton density effects SIBYLL: simple geometric criterion nucleon πr 2 0 α s(q 2 s) Q 2 s xg(x,q 2 s) nucleus log 0 ( E lab / ev ) 0 2 4 6 8 20 200 50 GRV98 EHLQ (R.E. et al., ICRC 999) No dependence on impact parameter!! (mb) 00 50 0 0 00 000 0000 00000 (GeV) E cm Total pp cross section

QGSJET: high parton density effects Re-summation of enhanced pomeron graphs Without enhanced graphs With enhanced graphs (Ostapchenko, PLB 2006, PRD 2006)

EPOS: high parton density effects (i) projectile partons projectile partons projectile partons projectile partons target partons target partons target partons target partons Parametrization No effective coupling A pom (x x 2 ) β With effective coupling A pom x β xβ ε 2 ε S = a S β S Z, ε H = a H β H Z, ()234567(3*8(59532(:; &#! ( &"! &!! %! $! #! "!! & &! &! " &! ' &! # ()*)+,-(./)0 (Werner et al., PRC 2006)

can already happen in pp collisions. EPOS: high parton density effects (ii) projectile partons target partons normal hadronization collective hadronization Coefficient Corresponding variable Value IV. REALIZATION OF LADDER SPLITTING EFFECT The basic quantity for a numerical treatment of the lad splitting effects is the number Z of partons available additional legs; more precisely, we have Z T for counting on the target side and Z P for counting legs on the proje side. Let us treat Z T (corresponding discussion for Z Consider a parton in the projectile nucleon i which inter with a parton in target nucleon j. The number Z T (i, j additional legs has two contributions, one counting the attached to the same nucleon j, and one counting the attached to the other nucleons j j. We assume the form s M Minimum squared screening energy (25 GeV) 2 w M Defines minimum for z 0 6.000 w Z Global Z coefficient 0.080 w B Z Impact parameter width coefficient.60 T (i, j) = z 0 exp ( bij 2 /2b 2) 0 a S Soft screening exponent 2.000 a H Hard screening exponent.000 + z 0 exp( b 2 2 ij /2b ) 0, a T projectile the energy, as Transverse momentum transport 0.025 a B partons Break parameter 0.070 target nucleons PARTON LADDER SPLITTING AND THE RAPIDITY... z 0 = w Z j a D Diquark break probability 0.0 log j s/s M PHYSICAL, REVIEW C 74, 044902 (5) a S Strange normal break hadronization probability 0.40 a P Averageprojectile break transverse momentum 0.50 thez energy, 0 = w Zas (log s/sm ) 2 + w 2 M, (6) partons ARTON LADDER SPLITTING AND THE RAPIDITY... PHYSICAL REVIEW C 74, 044902 (2006) where [log(x) b ij is:= the max(0, distance ln(x)] and z 0 in= the w Z impact log s/s M parameter, width betwee is b and j. The 0 = w coefficients B σinelpp /π, with z 0 and z parameters z 0 0 = w w Z depend B, w (log s/sm logarithmically Z, w ) 2 M, + w 2 and s M. M, collective hadronization target normal hadronization partons We then define (Werner et al., PRC 2006) [log(x) := max(0, ln(x)] and the impact parameter wi collective hadronization Z T (j) = Z T (i, j). (7)

Comparison with RHIC data RHIC data: very good agreement, (some measurements inconsistent) proton-proton Ecm = 200 GeV deuteron-gold Ecm = 200 GeV (Werner et al., PRC 2006),6736!6 + -.,/4 + 302 + 5,6736!6 + -.,/4 + 302 + 5!" +!"!!" #!!" #+!" #*!" #)!" #(!" #'!" #&!" #%!" #$!" +!"!!" #!!" #+!" #*!" #)!" #(!" #'!" #&!" #%!" #$,8,,,,,,9:,,,,,/;.<=5!,>,#"?&(!,>,#"?+(!,>,@"?+(!,>,@"?&( "! + * ) ( ' & %,-.,/02345,8,,,,,+"#)"A,,,,,/;.<=5!,>,#"?&(!,>,#"?+(!,>,@"?+(!,>,@"?&( "! + * ) ( ' & %,-.,/02345,6736!6 + -.,/4 + 302 + 5,6736!6 + -.,/4 + 302 + 5 0-2!" +!"!!" #!!" #+!" #*!" #)!" #(!" #'!" #&!" #%!" #$!" +!"!!" #!!" #+!" #*!" #)!" #(!" #'!" #&!" #%!" #$,8,,,,,"#+"A,,,,,,,,,/;.<=5!,>,#"?&(!,>,#"?+(!,>,@"?+(!,>,@"?&( "! + * ) ( ' & %,-.,/02345,8,,,,,)"#!""A,,,,,/;.<=5!,>,#"?&(!,>,#"?+(!,>,@"?+(!,>,@"?&( "! + * ) ( ' & %,-.,/02345

Model comparison: fixed target p-p data 0 0-0 -2 0-0 -2 0-3 p + p " # + P lab =00 GeV p t = 0.3 GeV/c 0 20 40 60 80 00 p + p " K + P lab =00 GeV 0 20 40 60 80 00 0 0-0 -2 0 0-0 -2 p + p " # - P lab =00 GeV p t = 0.3 GeV/c 0 20 40 60 80 00 p + p " K - P lab =00 GeV p t = 0.3 GeV/c 0-3 0 p t = 0.3 GeV/c 20 40 60 80 ev 2 ) p + p " p P lab =00 GeV p t = 0.3 GeV/c 0 20 40 60 80 00 p + p " ap P lab =00 GeV QGSJET II-3 EPOS.60 QGSJET0 SIBYLL 2. long. Momentum (GeV

Model comparison: fixed target π-p data 20 7.5 5 2.5 0 " + + p # " + P lab =00 GeV QGSJET II-3 EPOS.60 QGSJET0 SIBYLL 2. 0 " + + p # " - P lab =00 GeV 7.5 5 2.5 p t = 0.3 GeV/c 0 - p t = 0.3 GeV/c 0 0 20 40 60 80 00 0 20 40 60 80 00 0 - " + + p # K + P lab =00 GeV 0-0 -2 " + + p # K - P lab =00 GeV 0-2 p t = 0.3 GeV/c 0-3 p t = 0.3 GeV/c 0 20 40 60 80 00 0 20 40 60 80 00

Model comparison: fixed target p-c data 0 3 0 2 0 p + C " # + P lab =00 GeV 0 2 0 p + C " # - P lab =00 GeV (see also talk by E.-J. Ahn this meeting) 0 - p t = 0.3 GeV/c 0 - p t = 0.3 GeV/c 0 2 0 0-0 20 40 60 80 00 p + C " K + P lab =00 GeV 0 0-0 20 40 60 80 00 p + C " K - P lab =00 GeV QGSJET II-3 EPOS.60 QGSJET0 SIBYLL 2. 0-2 p t = 0.3 GeV/c 0-2 p t = 0.3 GeV/c 0 20 40 60 80 00 Note: SIBYLL plotting error, has to be scaled down by ~20% 0 20 40 60 80 00

Model comparison: fixed target π-c data 200 75 50 25 00 " + + C # " + P lab =00 GeV 0 2 0 " + + C # " - P lab =00 GeV 75 50 25 p t = 0.3 GeV/c p t = 0.3 GeV/c 0 0 20 40 60 80 00 0 20 40 60 80 00 0 " + + C # K + P lab =00 GeV 0 0 - " + + C # K - P lab =00 GeV QGSJET II-3 EPOS.60 QGSJET0 SIBYLL 2. 0 - p t = 0.3 GeV/c 0-2 p t = 0.3 GeV/c 0 20 40 60 80 00 Note: SIBYLL plotting error, has to be scaled down by ~30% 0 20 40 60 80 00

Model comparison: Tevatron data 6 0 2 p + ap " chrg at.8 TeV 0 p + ap 0 - p " + ap chrg " at chrg.8 TeV at.8 TeV Model comparison 4 0-0 -2!!! " Fermilab!!! " 6 0.75 0-3 0-3 0 2 p + ap " chrg at.8 TeV QGSJET II 0.5 0-4 0 p + ap " chrg at.8 Model comparison EPOS.60 Fermilab 2 NSD 4 0-5 QGSJET0 0-5 0 -!!! " QGSJET II 0.25 SIBYLL 2. EPOS 0.60 0-7 0-6 0-3 QGSJET0-5 0 2 5 0 0 5 0 SIBYLL 2. 0 200.5 40 peusdorapidity! NSD 0-5 p t (GeV/c) multiplicity n 0 0-2 p + ap " K 0 p + ap " chrg s at.80tev at.8 TeV 0-2 p + ap " # at.8 TeV 0-2 0 - p + ap " chrg 0 at.8-7 TeV 0 0.5-5 0 5 0 5!!! " peusdorapidity 0-3!!! " -!!! " 0-3 0-2!!!! " p t p + ap " # at 0-4.8 TeV 0-3 0-4 0-3 0 - p + ap " K s at.8 TeV!!! 0-5 " 0-2 0-4 0 - p + ap " chrg at.8!!! " 0-5 0 0-5 -6 0-5 0-3 0-2!!! " 0-6 0-7 0-4 0-6 0-3 0-7 0 0-5 5 00-7 0-4 20 40 ev/c) 5 0 5 0p -6 0-5 t (GeV/c) 0 0 2.5multiplicity 5 n ity! 0p -7 t (GeV/c) 0-6 p t (GeV/c) p + ap at.8 GeV dn/d! dn/dyd dn/dyd 2 p 2 t p (c 2 /GeV 2 ) t (c 2 /GeV 2 ) /$ dn/d! dn/dyd 2 p t (c 2 /GeV 2 ) dn/dyd 2 p t (c 2 /GeV 2 ) P(n) P(n) dn/dyd 2 p t (c 2 /GeV 2 ) dn/dyd 2 p t (c 2 /GeV 2 ) P(n) t dn/d! dn/dyd 2 p t (c 2 /GeV 2 )

Mean depth of shower maximum 900 850 800 HiRes-MIA HiRes p ) 2 <X max > (g/cm 750 700 650 600 550 Yakutsk 200 Fly s Eye Yakutsk 993 QGSJET 0 Fe 500 450 QGSJET II-3 SIBYLL 2. EPOS.60 400 5 0 6 0 7 0 Energy 0 (ev) 8 9 0 20 0

Mean number of muons at ground -2 0 Fe ) -???? N µ /E (GeV QGSJET 0 SIBYLL 2. EPOS.60 p QGSJET II-3 5 0 Iron (QGSJET) = proton (EPOS) 6 0 0 7 Energy 0 8 (ev) 9 0 20 0 (at 0 8 ev)

Electron-muon number correlation 6.5 6 EPOS.60 QGSJETII SIBYLL 2. QGSJET0 8 0 7 0 ev ev ) µ (N 5.5 0 log 5 Fe 6 0 ev 4.5???? 4 5 0 ev p 4.5 5 5.5 6 6.5 7 7.5 8 8.5 log 0 (N ) ch

Lateral particle distribution! density (m -2 ) 0 3 0 2 gamma EPOS.55 + FLUKA QGSJET0 + FLUKA QGSJET-II3 + FLUKA SIBYLL2 + FLUKA 0 0 - p E 0 =0 9 ev vertical preliminary???? e! density (m -2 ) 0 2 0 e + + e - preliminary Note: Xmax similar for EPOS and SIBYLL 2. 0-0 -2 p E 0 =0 9 ev vertical EPOS: much flatter lateral distribution for both muons and em. particles "! density (m -2 ) 0 2 0 0-0 -2 p E 0 =0 9 ev vertical " + + " - preliminary 0-3 0.5.5 2 2.5 3 3.5 4 core distance (km)

Why is EPOS so much different? Possible sources of differences: baryon antibaryon pair production rate & spectra leading meson production (?) (Pierog & Werner, astro-ph/063) EPOS predicts up to 5 times more baryons in hadronic shower core at high energy Relevant effects (confirmed with modified version of SIBYLL): baryon quantum number conservation transverse momentum distribution of baryons

Fixed target data on baryon production (i) 0.8 0.6 0.4 0.2 0 0 0 - -2 Initial momentum 00 GeV 0.8 0.6 0.4 0.2 0 0 0-0 -2 Initial momentum 00 GeV QGSJET II EPOS.60 QGSJET0 SIBYLL 2. 0 0.5 p + C " ap p + C " ap QGSJET II EPOS.60 QGSJET0 SIBYLL 2. 0 0.5 0 50 00 0 3 0 2 0 0 - p + C " # + + # - 0-0 50 00 0 0-0 3 0 2 0 0 p + C " # + + # - 00 GeV lab # + + C " p + ap 0 50 00 0-0 2 0 50 00 # + + C " p + ap 0-0 -2 0-3 # + + C " # + + # - 0 2 0 50 00 # + + p " p + ap 0 - # + + C " # + + # - 0 50 long. Momen 0 0-2 50 00-3 # + + p " p + ap

Fixed target data on baryon production (ii) E xd!/dx # + + p " p xd!/dx # - + p " ap Data: possible misidentification of π+ and p??? Need more data (MIPP, NA49) d"/dx 0-0 -2 0-0 -2 75 GeV lab 0 0.5 xl # + + p! $ 250 GeV lab - 0 xl 0-0 0.5 xl xl xl 0 # + + p! a$ d"/dx 0-0 -2 0-3 - 0 xl

Tevatron data on baryon production ratio ap/$ dn/dyd 2 p t (c 2 /GeV 2 ) 0. 0.075 0.75 0.05 0.5 0.025 0.25 0 dn/dyd 2 p t (c 2 /GeV 2 ) 0-2 0-3 0-4 0-5 0-6 0-7 /$ p + p at.8 GeV Model Model comparison comparison Fermilab Fermilab 0.75 QGSJET QGSJET II II 0.5 EPOS EPOS.60.60 QGSJET0 QGSJET0 0.25 SIBYLL 2. SIBYLL 2. 0 0 5 0.5 0 0.5 0 dn ch /dy(0) 0.75 0p -2 p + ap " # at.8 TeV + ap " # at.8 TeV 0.5 0-3!!! "!!! " 0.25 0-4 0-5 0-6 0-7 t d 2 p t (c 2 /GeV 2 ) dn/d! dn/dyd 2 p t (c 2 /GeV 2 ) 0 2.5 5 0 2.5 5 p t (GeV/c) p t (GeV/c) 0-4 p + p at.8 GeV -5 0 0-2 0-3 6 dn/d! 4 dn/dyd 2 p t (c 2 /GeV 2 ) 6 p + ap p + " ap chrg " chrg at.8 at TeV.8 TeV 4 dn/dyd 2 p t (c 2 /GeV 2 ) 0 2 0 2 0 0 p 0-0 - 0-3 0-3 2 2 NSD NSD 0-5 0-5 6 0 p + ap " 0 0-7 0 chrg -7 Model comparison -5 0 5 0 Fermilab -5 0 5 0 peusdorapidity peusdorapidity 4!! QGSJET II 0EPOS p - p + ap.60 + ap " K " K s at.8 s at.8 TeV TeV 0 - p QGSJET0 2 0-2 0 - SIBYLL 2.!!! "!!! " NSD 0-0 -2 0-3 0-3 0-4 0-4 0-5 0-5 0-6 0-6 0-7 0-7 0 0.5 p + ap " # at.8 TeV /$ dn/d! d 2 p t (c 2 /GeV 2 ) P(n)!!! 0 " 5 0 5 p0-3 t (GeV/c) p t (GeV/c) p + ap at.8 GeV 0-4 0 0-0 -2 dn/dyd 2 p t (c 2 /GeV 2 ) P(n) 0-2 0-2 0-3 0-3 0-4 0-4 0-5 0-5 0-6 0-6 -5 0 peu Multiplicity: not really conclusive, EPOS better than other models Transverse momentum important p + ap " K s at!!! 0" 0

Model comparison: high energy x F dn/dx F x F dn/dx F EPOS predicts up to 0-5 times more baryons in hadronic 0-2 shower core 0-0 -2 x F dn/dx F 0-3 0-4 0 0-3 0-4 p + C! " + +" - at 2 TeV F dn/dy 0 0.5 p + p! ap at 2 TeV Feynman x F 0 - p + C! p at 2 TeV 0 0.5 Feynman x 0 0.5 F Feynman x F x F dn/dx F 0.5 0. 0.05 x F dn/dx F 0 0-0 -2 0-3 0-4 p + p " ap at 2 TeV p + C! " 0 at 2 TeV -0 0 00.5 0 Feynman yx F 0-0 -2 0-3 0-4 0-5 p + C! ap at 2 TeV 0 0.5 Feynman x F x F dn/dx F dn/dyd 2 p t (c 2 /GeV 2 ) 0-0 -2 0-3 0-4 0-2 0-4 0-6

Popcorn effect: leading mesons x F dn/dx F 0 0-0 -2 0-3 0-4 p + p! " + +" - at 2 TeV x F dn/dx F 0-0 -2 0-3 0-4 p + p! " 0 at 2 TeV x F dn/dx F 0-0 -2 0-3 0-4 p + p! K + +K - at 2 TeV 0 0.5 Feynman x F 0 0.5 Feynman x F 0 0.5 Feynman x F x F dn/dx F 0 - p + p! p at 2 TeV 0 0.5 Feynman x F Model comparison pp 2 TeV dn/d! x F dn/dx F QGSJET II EPOS.60 2 QGSJET0 SIBYLL 2. 0-0 -2 0-3 0-4 4 3 p + p! ap at 2 TeV p + p " chrg at 2 TeV 0 0.5 Feynman x F dn/dyd 2 p t (c 2 /GeV 2 ) 0-2 0-4 0-6 p + p! " 0 at 2 TeV 0 2 4 6 p t (GeV/c) Tevatron measurements would be extremely helpful dn/dy 2.5 0.5 p + p " # + at 2 TeV

Estimated signal for Auger tanks Prediction can be tested with Auger hybrid events Cherenkov density (VEM/m 2 ) 0 2 0 0 - Cherenkov density gamma contribution positron contribution electron contribution muon contribution EPOS.55 + FLUKA2006.3 vertical proton E 0 =0 9 ev Cherenkov density (VEM/m 2 ) 30 20 0 9 8 7 6 5 4 3 EPOS.55 + FLUKA QGSJET0 + FLUKA QGSJET-II3 + FLUKA SIBYLL2 + FLUKA Cherenkov density proton E 0 =0 9 ev vertical preliminary 0.5 0.6 0.7 0.8 0.9. core distance (km) 0-2 2007/03/27 preliminary 4.05 0.5.5 2 2.5 3 3.5 4 core distance (km)

Hybrid measurement: HiRes-MIA Mean depth of shower maximum 850 800! = 93.0 + 8.5 + (0.5) sys. + stat. sys. Muon density at 600 m 2 X max (g/cm ) 750 700 650-2 (600m) (m )! " = 0.73 + 0.03 + (0.02) sys. sys. + stat. 600 p Fe QGSJet 550 6.5 7.0 7.5 8.0 8.5 9.0 log (E/eV) 0 0. QGSJet Iron QGSJet Proton (HiRes-MIA, PRL 2000) 0. 8 E ( 0 ev)

Simulation of HiRes-MIA data 900 Mean depth of shower maximum ) 850 800 HiRes-MIA p 2 <X max > (g/cm 750 700 650 600 550 HiRes Fe QGSJET 0 EPOS.60 Muon density at 600 m MIA stat+syst err Fe 500 7 0 0 Energy 8 (ev) 9 0 ) -2 p Simulation done for QGSJET and EPOS!(600) (m - 0 QGSJET 0 EPOS.60 (Pierog & Werner, astro-ph/063) 7 0 Energy (ev) 8 0

Conclusions Different model concepts Models in reasonable agreement with pion production data Some discrepancies for K+ production Baryon antibaryon production underestimated EPOS gives very good description of data More fixed target measurements needed Tevatron and LHC measurements would help Cosmic ray data will help to discriminate between models (KASCADE: Ne-Nμ, hadrons; Auger hybrid events; inclusive muon flux measurements)

Hybrid measurement: A n g l e Pierre Auger Observatory S h o w e r p l a n e 29th International Cosmic Ray Conference Pune (2005) 00, 0 06 First Estimate of the Primary Cosmic Ray Energy Spectrum above 3 EeV from the Pierre Auger Observatory The Pierre Auger Collaboration Presenter: P. Sommers (sommers@physics.utah.edu) F l y ' s E y e w i t h activated phototubes Measurements of air showers are accumulating at an increasing rate while construction proceeds at the Pierre Auger Observatory. Although the southern site is only half complete, the cumulative exposure is already similar to those achieved by the largest forerunner experiments. A measurement of the cosmic ray energy spectrum in the southern sky is reported here. The methods are simple and robust, exploiting the combination of fluorescence detector (FD) and surface detector (SD). The methods do not rely on detailed numerical simulation or any assumption about the chemical composition. I m p a c t p o i n t C e r e n k o v t a n k s Simulation: particles at ground correspond to 25% higher shower energy than measured shower profile P. Sommers et al. astro-ph/050750 Caution: within current systematic uncertainty