Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method

Similar documents
Solutions for Assignment-6

Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition

SPECTROSCOPIC CHARACTERIZATION OF CHEMICAL BATH DEPOSITED CADMIUM SULPHIDE LAYERS

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Preparation and Thickness Measurement of Cu x Zn 1-x S Nanocomposite Thin Film by SILAR Method

Supporting Information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2

Electronic Supplementary Information. Crystallographic Orientation Propagation in Metal Halide Perovskite Thin Films

COMPOSITION AND OPTICAL CHARACTERIZATION OF ZnO/NiO MULTILAYER THIN FILM: EFFECT OF ANNEALING TEMPERATURE

Electronic Supplementary Information

Supplementary Figure 1. A photographic image of directionally grown perovskite films on a glass substrate (size: cm).

Determination of the Optical Constants of Cuo Using Copper (II) Sulphate Pentahydrate Complex

Morphology-Selective Synthesis of Cu(NO3)2 2.5H2O. Micro/Nanostructures Achieved by Rational Manipulation

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Electronic Supplementary Information

Supporting Information for

Supporting information

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water

Effect of Substrate Temperature on Structural and Optical Properties of CdO Thin Films

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

ARC-ASSISTED CO-CONVERSION OF COAL-BASED CARBON AND ACETYLENE

INVESTIGATION OF THE OPTICAL AND ELECTRICAL PROPERTIES OF TIN SULFIDE THIN FILMS

Strong Facet-Induced and Light-Controlled Room-Temperature. Ferromagnetism in Semiconducting β-fesi 2 Nanocubes

Supporting Information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

EFFECT OF CAPPING AGENT ON TIN SULPHIDE (Sn x S 1-x ) NANOPARTICLES BY COST EFFECTIVE CHEMICAL ROUTE

Supporting Information for: Three-Dimensional Cuprous Oxide Microtube Lattices with High Catalytic

Film: A Pseudocapacitive Material with Superior Performance

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows

K D R N Kalubowila, R P Wijesundera and W Siripala Department of Physics, University of Kelaniya, Kelaniya, Sri Lanka ABSTRACT

Electronic Supplementary Information

The characterization of MnO nanostructures synthesized using the chemical bath deposition method

Supporting Information

Effects of Ligand on the Absorbance and Transmittance of Chemical Bath Deposited Zinc Sulphide Thin Film

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors

Supporting Information:

Supporting Information

Electronic Supplementary Information. Photoelectrochemical Water Splitting in an Organic Artificial Leaf

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Supporting Information

Supporting Information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Supporting Information

Supporting Information

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

A new concept of charging supercapacitors based on a photovoltaic effect

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Optical Properties of Chemical Bath Deposited CuAlS 2 Thin Films

Supporting Information

4. CV curve of GQD on platinum electrode S9

Electronic Supplementary Information. Hydrogen Evolution Reaction (HER) over Electroless- Deposited Nickel Nanospike Arrays

and their Maneuverable Application in Water Treatment

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supporting Information

Synthesis of Copper Oxide Nanoparticles in Droplet Flow Reactors

A novel AgIO 4 semiconductor with ultrahigh activity in photodegradation of organic dyes: insights into the photosensitization mechanism

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Supplementary data Methanolysis of Ammonia Borane by Shape-Controlled Mesoporous Copper Nanostructures for Hydrogen Generation

SUPPLEMENTARY INFORMATION

Synthesis of Cu 2 O, CuCl, and Cu 2 OCl 2 nanoparticles by ultrafast laser ablation of copper in liquid media

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals

Supporting Information

Gas Sensors Based on Multiwall Carbon Nanotubes Decorated with. Different Metal Oxides Nanoparticles.

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

Supporting Information s for

Supporting Information

Nanochannel-Assisted Perovskite Nanowires: Growth Mechanisms. to Photodetector Applications

Supporting Information

High-resolution on-chip supercapacitors with ultra-high scan rate ability

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax:

Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supplementary information

Supporting Information

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

Successive ionic layer deposition: possibilities for gas sensor applications

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

THE INFLUENCE OF CADMIUM SALT ANION ON THE GROWTH MECHANISM AND ON THE PHYSICAL PROPERTIES OF CdS THIN FILMS

-organic Thin Film From an Aqueous Solution

EXPERIMENT 7 Precipitation and Complex Formation

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Electronic Supplementary Information

MORPHOLOGY AND THERMAL STUDIES OF NICKEL CARBONATE NANOPARTICLES

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

Electronic Supplementary Information: Synthesis and Characterization of Photoelectrochemical and Photovoltaic Cu2BaSnS4 Thin Films and Solar Cells

Supporting Information for

Urchin-like Ni-P microstructures: A facile synthesis, properties. and application in the fast removal of heavy-metal ions

Supporting information

Transcription:

STUDENT JOURNAL OF PHYSICS Indian Association of Physics Teachers Presentations Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method P. Ghotane 1 and K. Deshpande 2 1 Third year, B. Sc, Department of Physics, Dr. Ghali College, Gadhinglaj MS India 416502 2 Third year, B. Sc, Department of Chemistry, Dr. Ghali College, Gadhinglaj MS India 416502 Email: prashantghotane@gmail.com Abstract: Multilayer, multi-metal oxide (CuNiO 4) thin films are deposited on glass substrate by modified SILAR deposition method. The chemicals copper chloride and Nickel acetate act as a cationic precursor solution and KOH as a anionic precursor solution. The SILAR is mainly based on the immersion of the substrate into separate cationic and anionic precursor solution and rinsing between each immersion with water to avoid precipitation. Effect of preparative parameters such as concentration, time, ph etc were studied and optimized to get uniform films. These thin films are found to be very useful in many applications like solar cells, sensors, temperature controller satellite etc. These films were characterized by X ray diffraction and SEM techniques. The X ray diffraction (XRD) data was used to determine of crystal structure. X-ray diffraction study reveals that the films are amorphous and optical study estimated the band gap value 2.56 ev. 1. INTRODUCTION Many chemical deposited metal oxide thin films including manganese oxide, cobalt oxide, tin oxide, and copper nickel oxide, etc. have been applied in supercapacitors [1]. The thin film deposition method involving the growth from solution is called chemical methods. Copper oxides exist in two stable forms, the cuprous oxides (Cu 2 O) and the cupric oxides (CuO). These two oxides have very different colors, crystal structures, and physical properties. Simple chemistry tells that these differences are mainly due to the fact that Cu in Cu 2 O is in the Cu+ state. Cu 2 O is a red-colored cubic semiconductor. Nickel oxide has molecular formula NiO. Its molar mass is 74.6928 g/mol. Its density is 6.67g/mol. It is soluble in ammonium hydroxide. 225

Synthesis and Characterization of Innovative Multilayer,. Modified Silar Deposition Method Thin semiconductor films of CuNiO 2 are applicable in the various applications [2-5]. Our attempt is to prepare thecunio 2 thin films by the Successive Ionic Layer Adsorption and Reaction method (SILAR), which is very easy, inexpensive and relatively low temperature deposition method [6]. The thickness and other preparative parameters can be easily controlled by this method. Thin film plays a vital role in the present day technology development. The different methods of thin film deposition offer a major key to the fabrication of micro and nanoscale devices [2]. The deposition of thin films by vacuum evaporation, spray pyrolysis, electrodeposition, anodization, electroless deposition, chemical bath depositions (CBD), successive ionic layer deposition (SILAR) etc. are well known methods [7]. Among these deposition methods, SILAR is simple, inexpensive and convenient for large area deposition. 2. EXPERIMENTAL 2.1 Substrate Cleaning Before any substrate can be used, it must be adequately cleaned. The proper cleaning technique depends on the nature of the substrate, the nature of the contaminants and the degree of cleanness required. Cleaning involves the breaking of adsorption bonds between the substrate and the contaminants without damaging the substrate surface itself. The following procedure has been adopted for cleaning of the micro-slide (glass) substrates [8], 1. The micro-slide was washed with double distilled water, 2. Boiled in 0.5 M chromic acid for 1 h and kept in it for 24 hours, 3. Washed with double distilled water and Ultrasonically cleaned with double distilled water for 10 min and used prior to the deposition. 226 Student Journal of Physics, Vol. 5, No. 3, Oct., 2015

P. Ghotane and K. Deshpande 2.2 Preparation of Solution The copper chloride, Nickel Acetate, and KOH is used for the solution preparation. The required amount of chemicals were weighed accurately and dissolved in double distilled water. All solutions of approximate concentration were prepared prior to the deposition. 2.3 Deposition of CuNiO 2 thin films For the deposition of CuNiO 2 thin film 0.1 M of CuCl 2 and 0.1 M of nickel acetate were used as cationic precursor solution and 0.1 M KOH was used as the anionic precursor solution. The well cleaned glass/stainless steel substrate was immersed in a cationic precursor solution for 10s for the adsorption of Copper Nickel species on the substrate surface. The substrate was rinsed in double distilled water for 5s to remove loosely bound species. Then the substrate was immersed in anionic precursor solution (KOH) for 10s to form layer of CuNiO 2 material. Rinsing the substrate again in double distilled water in 10s to separate out excess and non-reacted species. Thus one SILAR cycle of CuNiO 2 deposition was completed. Then 80, 90, 100 and 110 cycles were repeated and different film thickness were obtained. 2.4 Reaction mechanism The CuNiO 2 films were prepared by immersing substrate in separately cationic and anionic precursors with rinsing between every immersion. The growth kinetics of thin film deposition process is ion by ion growth mechanism, which involve the ion by ion deposition on substrate. The mechanism of CuNiO 2 is given as below. Student Journal of Physics, Vol. 5, No. 3, Oct-Dec, 2015 227

Synthesis and Characterization of Innovative Multilayer,. Modified Silar Deposition Method 3. RESULTS AND DISCUSSION 3.1 X-ray diffraction (XRD) studies Fig. 1 displays XRD pattern for CuNiO 2 thin film. CuNiO 2 spinel structure. It shows the amorphous nature. The small peak intensities in XRD pattern are attributed to the existence of fine grains. Figure 1: XRD pattern of CuNiO 2 3.2 Surface morphological studies Fig.2 displays the scanning electron microscopy (SEM) images of randomly distributed corn nanoflakes ofcunio 2. The images are taken at four different magnifications of x 2,000, 5,000, 10,000 and 500 as shown in following figs..the average size of each rose varies between 1-50μm in diameter. There are randomly oriented nanoflakes for each rose; this may be because of faster nucleation rates during deposition. 228 Student Journal of Physics, Vol. 5, No. 3, Oct-Dec, 2015

P. Ghotane and K. Deshpande Figure 2: The SEM image of CuNiO 2 thin film. 3.3 Optical absorption studies The optical absorption spectrum in the range of 350-900 nm for the CuNiO 2 film was carried out on to the glass substrate without scattering and reflection taking into account. Inset of Fig.3.4 shows the optical absorption of CuNiO 2 film. The absorption edge was found at nm due to optical band gap absorption. The optical band gap for CuNiO 2 film is calculated on the basis of optical absorption using the following equation, n A( h Eg) h Where α is absorption coefficient, Eg is band gap, A is constant and n is equal to 1/2 for direct transition. The plot of (αhυ) 2 versus hυ of CuNiO 2 film is shown in fig. The band gap energy, Eg is obtained by extrapolating the linear portion of the plot (αhυ) 2 versus hυ to the energy axis at α=0. From the graph for CuNiO 2 thin film, band gap value is 2.56 ev. Figure 3: Shows Optical Characteristics of CuNiO 2 thin film Student Journal of Physics, Vol. 5, No. 3, Oct-Dec, 2015 229

Synthesis and Characterization of Innovative Multilayer,. Modified Silar Deposition Method ACKNOWLEDGEMENT The Authors are very much thankful to Dr. S.A. Masti, Head, Department of Physics, Prof. Ashwin Godghate and Prof. Kiran Patil of Department of Chemistry for their valuable help in completion of project. REFERENCES [1] K.L. Chopra, Thin Film Phenomena, Mc Graw Hill Book Co. New York (1969). [2] Vinay Gupta, Norio Miura, Electrochem. Acta 52, 1721 (2006). [3] Li Li Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009). [4] G. Wang, L. Zhang, and J. Zhangb, Chem. Soc. Rev. 41, 797 (2012). [5] H. Pan, J. Li, and Y.P. Feng, Nanoscale Res. Lett. 5, 654 (2010). [6] C.D. Lokhande, D.P. Dubal, and O.S. Joo, Curr. Appl. Phys. 11, 255 (2011). [7] H.Q. Wang, Z.S. Li, Y.G. Huang, Q.Y. Li, and X.Y. Wang, J. Mater. Chem. 20, 3883 (2010). [8] Y.B. Luo, J.S. Cheng, Q. Ma, Y.Q. Feng, and J.H. Li, Anal. Methods 3, 92 (2011). 230 Student Journal of Physics, Vol. 5, No. 3, Oct-Dec, 2015