Comparative effect on bacterial biofertilizers on growth and yield of green gram (Phaseolus radiata L.) and cow pea (Vigna siensis Edhl.

Similar documents
Title: Plant Nitrogen Speaker: Bill Pan. online.wsu.edu

Effect of inclusion of biofertilizers as part of INM on yield and economics of Safflower (Carthamus tinctorius L)

Effect of some root associative bacteria on germination of seeds, nitrogenase activity and dry matter production by rice plants

EFFECT OF RHIZOBIUM AND PSB IN MYCORRHIZAL LEGUMINOUS PLANTS

Doug Kremer President Mike Kelly Director Turf Operations. Maximizing Earth s Potential

Plant growth promoting rhizobacterial strains from rice rhizospheric soil

Assessment of Microbial diversity in non-rhizosphere soil of forest nurseries in Southern Tamil Nadu, India

ALLELOPATHIC EFFECTS OF CELOSIA ARGENTEA L. ON SPERMOSPHERE MICROORGANISMS

Effect of diazotrophs on the mineralization of organic nitrogen in the rhizosphere soils of rice (Oryza sativa)

Performance of Bradyrhizobial isolates under drought conditions

Bacterial Diversity in Wheat Rhizosphere and their Characterization

Chapter 37: Plant Nutrition - A Nutritional Network

CHROMATOGRAPHY, AND MASS SPECTRAL. FRACTIONS OF Lasianthus

EFFECT OF GLOMUS MOSSEAE ON GROWTH AND CHEMICAL COMPOSITION OF CAJANUS CAJAN (VAR. ICPL-87)

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY

Iranian Journal of Field Crops Research Vol. 10, No. 4, Winter 2013, p (N 80 (PGPR)

Plant Growth-promoting Rhizobacteria and Soybean [Glycine max (L.) Merr.] Growth and Physiology at Suboptimal Root Zone Temperatures

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES 1 INTRODUCTION AIM AND SCOPE OF THE PRESENT INVESTIGATION 7

U. Maity and A.K. Bera. Department of Plant Physiology Bidhan Chandra Krishi Viswavidyalaya Mohanpur , West Bengal, India ABSTRACT

Response of Sesame (Sesamum indicum L.) to Single and Dual Inoculation with Azospirillum brasilense and Glomus fasciculatum at Different NPK Levels

Effects of Serratia liquefaciens isolate KM2 on Physiology and Phytohormones of Mung bean (Vigna radiata L.)

The role of Pseudomonas fluorescens strains in growth and phosphate concentration of Rapeseed (Brassica napus L.)

) ON SEED GERMINATION OF CELOSIA ARGENTEA L.

Anabaena azollae -This relationship is useful in rice-based crop systems throughout Asia.

EFFECT OF INOCULATION WITH VAM-FUNGI AND BRADYRHIZOBIUM ON GROWTH AND YIELD OF SOYBEAN IN SINDH

I International Journal of Innovations in Agricultural Sciences (IJIAS) Journal of In

Effect of 28-homobrassinolide on the nitrate reductase, carbonic anhydrase activities and net photosynthetic rate in Vigna radiata

IDENTIFICATION AND DETERMINATION OF HYDROQUINONE IN COSMETIC PRODUCTS 2 14/11/17 ACM 003 BY TLC AND HPLC

ARTEMETHER AND LUMEFANTRINE TABLETS: Final text for addition to The International Pharmacopoeia (July 2008)

Plant Growth Promoting Rhizobacteria

EFFECT OF VAM AND AZOSPlRILLUM BRASILENSE ON PHOTO SYNTHESIS, NITROGEN METABOLISM AND GRAIN YIELD IN WHEAT

ASSOCIATION OF MICROFLORA WITH RUBBER (Hevea brasiliensis) AND THEIR BENEFICIAL ROLES

Fully approved by The South African Department of Agriculture, Forestry & Fisheries Registration Number: B4807

Chromatographic Methods of Analysis Section 2: Planar Chromatography. Prof. Tarek A. Fayed

Key words: Common bean, phosphorus, biofertilizers, nitrogen content and uptake

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

INTRODUCTION. Amino acids occurring in nature have the general structure shown below:

Evaluating SYDlbiotic Potential of Rhizobia

PAPER AND THIN LAYER CHROMATOGRAPHY (TLC)

Commercial microbial inoculants with endophytes (an overview)

Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass

INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS AND STREPTOMYCES CINNAMOMEOUS AND THEIR EFFECTS ON FINGER MILLET

Jang-Sun Suh National Institute of Agricultural Science and Technology, RDA Republic of Korea

LUMEFANTRINUM LUMEFANTRINE

ENV SCI 22 GROUP QUIZ WEEK 2

BRIEFING. (EXC: K. Moore.) RTS C Propylparaben C 10 H 12 O Benzoic acid, 4 hydroxy, propyl ester; Propyl p hydroxybenzoate [ ].

ARTEMETHER AND LUMEFANTRINE ORAL SUSPENSION:Final text for addition to The International Pharmacopoeia (November 2008)

Study of Genetic Divergence in Pea (Pisum sativum L.) based on Agro-Morphic Traits

7. M2/1 Subfamily Caesalpinoideae. A flower of Bauhinia sp. shows floral morphology typical of the species in the subfamily Caesalpinoideae.

Proc. Indian Acad. Sci. (Plaat Sci.), Vol. 95, No. 1, August 1985, pp Printed in India. K PARVATHI, K VENKATESWARLU and A S RAO

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN

(DMB 01) M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER First Year. Microbiology. Paper I INTRODUCTION TO MICROORGANISMS

Chromatography. writing in color

BIOL 695 NITROGEN. Chapter 7 MENGEL et al, 5th Ed NITROGEN CYCLE. Leaching

This method describes the identification of the following prohibited colorants in cosmetic products:

Amutha and Kokila, IJALS, Volume (7) Issue (2) May RESEARCH ARTICLE

Effect Of Inoculation Of Vam Fungi On Enhancement Of Biomass And Yield In Okra. Maruti S. Darade

Combined application of Azotobacter and Urea to improve growth of rice (Oryza sativum)

Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress

Chromatography Lab # 4

Lidia Sas Paszt The Rhizosphere Laboratory, Research Institute of Horticulture, Skierniewice, Poland,

Q1) Germ theory of diseases. Q2) Louis Pasteur. Q3) Bacillus. Q4) Cyanobacteria. Q5) Viroids. Q6) Prions Q7) TMV Q8) T4

Growth, nodulation and yield of mash bean (Vigna mungo L.) as affected by Rhizobium inoculation and soil applied L-tryptophan

WJEC. BY4 Photosynthesis Questions

Vigna angularis. ESSENCE - International Journal for Environmental Rehabilitation and Conservation

Interactions Between Microorganisms and Higher Plants from Competition to Symbiosis p. 184

High Performance Biology

Soil and Plant Nutrition

Chapter content. Reference

Sample Preparation TLC Plates

Effect of Biofertilizers on Growth and Establishment of Cashew Grafts under Nursery Condition

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5.

Lonicera japonica Flower Dry Extract. Proposed For Development Version 0.1. Published on Herbal Medicines Compendium (

Lab.2. Thin layer chromatography

637. Thiamethoxam. HPLC method

Biostimulants to enhance Nutrient Use Efficiency in Crop Plants

Thin Layer Chromatography

Rukhsana Bajwa, Arshad Javaid and Nusrat Rabbani. Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan

Lonicera japonica Flower Powder. Proposed For Development Version 0.1. Published on Herbal Medicines Compendium (

The Study and Development of Endophytic Bacteria for Enhancing Organic Rice Growth

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN Research Article

Microbial Technology for Biomass Production in Barren Land

Synthesis of Dihydroquinoline Based Merocyanines as Naked Eye and Fluorogenic sensors for Hydrazine Hydrate in Aqueous Medium

Stationary phase: Non-moving phase that provides support for mixture to move.

Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove

Bioinoculation of halophilic phosphobacteria for raising vigorous seedlings of Rhizophora mucronata

Co-inoculated Biopriming with Trichoderma, Pseudomonas and Rhizobium Improves Crop Growth in Cicer arietinum and Phaseolus vulgaris

Downloaded from

Accepted 5 August, 2013

solution, Concentrated HNO 3

Effect of Entophytic Bacteria on the Rooting and Establishment of Cuttings of Hibiscus Rosasinensis

Nodulation Study in Some Varieties of Frenchbean Crop (Phaseolus vulgaris L.)

Complexation Ion-exchange Chromatography of Some Metal Ions on Papers Impregnated with Ti(IV)-Based Inorganic Ion Exchangers

Liquid Chromatography

THE EFFECT OF DOUBLE INOCULATION ON THE BROAD BEANS (VICIA FAbA L.) YIELD QUALITY

ASSIGNMENT-1. M.Sc. ( Previous ) DEGREE EXAMINATION, MAY 2018 First Year MICROBIOLOGY Introduction Microorganisms

Phytochemical and HPTLC Studies of Various Extracts of Annona squamosa (Annonaceae).

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE

RESPONSE OF BLACK GRAM (PHASEOLUS MUNGO L.) TO SULPHUR DIOXIDE

Isolation optimization of bacterial endophytes from cucumber plants and evaluation of their effects on growth promotion and biocontrol

Transcription:

ISSN: 2319-776 Volume 1 Number 1 (212) pp.34 39 Original Research Article Comparative effect on bacterial biofertilizers on growth and yield of green gram (Phaseolus radiata L.) and cow pea (Vigna siensis Edhl.) P.K.Senthilkumar* and P.Sivagurunathan Faculty of Science, Annamalai University, Annamalai nagar, Tamil Nadu, India. *Corresponding author: mailtopks@yahoo.com A B S T R A C T K E Y W O R D S Bacterial biofertilizers; seed inoculation; morphological and bio-chemical parameters ; Chromatographic technique. The comparative effect of bacterial biofertilizers such as Rhizobium, Phosphobacteria and Azozpirillum on growth and yield of green gram (Phaseolus radiata L.) and cowpea (Vigna siensis Edhl.) was studied. The bacteria were isolated from the soil samples and identified by staining and biochemical tests. The seeds were inoculated with bacterial biofertilizers with various treatments and showed in sterile polythene bag containing sterilized soil. After 6 days growth, the morphological and bio-chemical parameters of cowpea were increased in combined inoculation of Rhizobium, Phosphobacteria and Azospirillum than green gram plants. Introduction Biofertilizers are the green manure and organics. Biofertilizers are carrier-based inoculants containing cells of efficient strains of specific microorganisms (namely bacteria) used by farmers for enhancing the productivity of the soil by fixing atmospheric nitrogen or by solubilizing soil phosphate or by stimulating plant growth for synthesis of growth promoting substances. Biofertilizers play a main key role for selective adsorption of immobile (P, Zn, Cu) and mobile (C, S, Ca, K, Mn, Cl, Br, and N) elements to plants (Tinker, 1984). The rhizosphere bacteria secrete growth substances and secondary metabolic, which contribute to seed germination and plant growth (Subba Rao, 1982, 22; Dwivedi, 1989). In recent years, free living bacteria (Azotobacter), associate (Azospirillum) and symbiotic (Rhizobium) bacteria and phosphate solubilizing one (Bacillus megaterium, B. polymyxa and Ps. Striata) are gaining much popularity. Such practices are being encouraged to save the chemical fertilizers natural economy and the environment. Materials and Methods Polythene bag method was conducted to study about the comparative effect of bacterial biofertilizers on pulse crops like green gram (Phseolus radiata L.) and cowpea (Vigna siensis Edhl.). Bacterial biofertilizers such as Rhizobium, Phosphobacteria and Azospirillum were isolated from the root nodule and soil samples by plating technique and identified according to Bergey s manual of Determinative Bacteriology (9 th Edition). Seed inoculation was done by various alone treatments like Phosphobacteria (T1), Azospirillum (T2) and Rhizobium (T3), dual inoculations like Phosphobacteria and Azospirillum (T4), Rhizobium and Azospirillum (T), Rhizobium and Phosphobacteria (T6) and combined inoculations of Rhizobium, Phosphobacteria and Azospirillum (T7). Control was also maintained without biofertilizers. 34

The seeds were sowed in sterile polythene bags containing sterile soil samples. After 6 days of sowing, the morphological and biochemical parameters of green gram and cowpea were analyzed. The morphological parameters like, number, breadth,, shoot, number of flowers, root, number of nodules and number of pods were analyzed. The bio-chemical parameters such as chlorophyll, protein, carbohydrate, total free amino acids, nitrogen, ash, inorganic phosphorus, reducing sugar, alkaline phosphatase, glutamate dehydroganase were analyzed both control and treated plants of green gram and cowpea. The amino acids contents of green gram and cowpea samples were separated by two dimensional paper chromatography. In this, 2µl of each sample were spotted on the whattmann No.1 chromatographic paper and sheet was mounted on the metal frame. The papers were placed in solvent 1 containing butanol, glacial acetic acid and water (12:3:). After running in first solvent, the papers again placed in solvent 2 containing phenol and water. The papers rapidly dipped in ninhydrin reagent and colour was developed by heating at 1ºC for 2-3 minutes. Then Rf values were measured (Plummer, 1998) Lipids were separated by Thin Layer Chromatography techniques. In this, an aqueous phase of silica gel slurry was poured on the surface of the glass plates of 2µm thickness. The plates were activated by heating 11ºC for 1 hour and allowed to cool in room temperature. 2µl of each sample was spotted onto the plates and placed in solvent containing petroleum ether, diethyl ether and glacial acetic acid (8:2:1) and run the chromatogram. The spot was visualized by spraying the plates with % v/v sulfuric acid followed by heating the oven at 11ºC for 1 minutes. Then Rf values were measured (Plummer, 1998). Rf= Distance moved by solute Distance moved by solvent From the data, statistical analysis such as Mean (M), standard deviation (SD) and Standard error (SE) were also calculated (Smith s Statistical package, Version 2., 21). Results and Discussion The seed inoculation with bacterial biofertilizers like Rhizobium, Phosphobacteria and Azospirillum at various treatments were significantly increased in plant growth and yield of green gram and cowpea plants. The number, leaf area ( and breadth), shoot, root, number of nodules, total s at 6 days after sowing was significantly more with there combined treatment with Rhizobium, Phosphobacteria and Azospirillum inoculated plants of cow pea than green gram (Table 1 and 2). The yield concepts such as number of flowers and number of pods were increased in the combined treatments with Rhizobium, Phosphobacteria and Azospirillum inoculated plants of cowpea than green gram (Tables 3 and 4). This was well agreed with previous findings of Gaur and Agarwal (1989), Tilak (1991) and Vasudevan et al (22). The bio-chemical parameters such as chlorophyll, protein, carbohydrate, total free amino acids, inorganic phosphorus, nitrogen were increased in treated with combined inoculation of bacterial biofertilizers (T7) of cowpea than green gram (Table and 6). This was well correlated with earlier studies on Vigna mungo L. (Mohan et al., 1994; Shukla and Gupta, 1964). Increase in ascorbic acid, reducing sugar content were observed in combined inoculation of bacterial biofertilizers (T7) of cowpea plants than green gram. Activity of enzymes like alkaline phosphatase and glutamate dehydrogenase were higher in combined inoculation of cow pea plants (Table 7 and 8). All the parameters like morphological and bio-chemical parameters of cowpea treated with bacterial biofertilizers in dual and combined inoculations were higher than green gram. It was accepted with previous reports of Balamurugan and Gurusejaran (1996), Agarwal and Tilak (1989) and Gupta et al (1992). By employing two dimensional paper chromatography techniques, the amino acid contents of cowpea plants were higher in combined treatments and Rf values were.9 than green gram. The lipid contents of cowpea plants were separated by TLC technique and their Rf values were.98 in combined inoculation of bacterial biofertilizers than green gram (Fig 1 and 2). 3

Table. 1 Effect of morphological parameters of cowpea plants inoculated with bacterial biofertilizers Number of leaves/plant Breadth Shoot Root Control 6.8.4 2. 48.9 24.6 9. 7.9 Phosphobacteria 7.6 6.3 2.6 3.2 2.4 12.2 7.4 Azospirillum 9..6 2.9 48.2 26.6 11.4 9.6 Rhizobium 9.2 6.2 2.8 3.2 2.8 11. 64.2 Phosphobacteria 8.4 6.4 3.1. 28.4 12.8 62.8 Rhizobium + Azospirillum 9.6.7 2.6 2. 3. 14.6 66.6 Rhizobium+Phophobacteria 9.4 6.4 3.1 4.6 28.8 14.6 69.2 Total 1.6 6.8 4.. 31. 17.2 72.2 Table. 2 Effect of morphological parameters of green gram plants inoculated with bacterial biofertilizers Number of leaves/plant Breadth Shoot Root Control 7. 4.8 2.1 2.9 1.9 4. 21. Phosphobacteria 7.4.1 2.4 21.6 19.4 4.9 2.8 Azospirillum 7.4.4 2.1 21.3 2.2.9 2.7 Rhizobium 7.6.7 2.8 31. 23.4 6.6 37.6 Phosphobacteria 8..1 2.9 34.2 21.8 7.1 41.3 Rhizobium + Azospirillum 8.8 4. 2.3 34.2 2.8 6.4 4.8 Rhizobium+Phophobacteria 8.8.8 2.4 34.4 22.6 7.8 41.8 Total 9. 6.6 2.4 3.2 2.2 7.9 43. Table. 3 Effect on yield concepts of cow pea plants inoculated with bacterial biofertilizers Number of nodules/plant Number of flowers/ plant Number of pods/plant Control 18.4 2.4 2. Phosphobacteria 2. 2.4 2.4 Azospirillum 21.2 2.8 3.4 Rhizobium 18.2 2.8 3. Phosphobacteria 21.4 3.4 3.2 Rhizobium + Azospirillum 22.4 4.2 3.2 Rhizobium+Phophobacteria 21.8 3. 4. 23.2 4.8 4.2 Table. 4 Effect on yield concepts of green gram plants inoculated with bacterial biofertilizers Number of nodules/plant Number of flowers/ plant Number of pods/plant Control 8.4 1.6 1.2 Phosphobacteria 9. 1.8 2.2 Azospirillum 12. 1.7 3. Rhizobium 12.2 1.8 3. Phosphobacteria 12. 1.8 3. Rhizobium + Azospirillum 18.2 2. 3.2 Rhizobium+Phophobacteria 21. 2. 3.6 22.2 4.2 4. 36

Table. Effect of biochemical parameters of cowpea plants inoculated with bacterial biofertilizers Chlorophyll Protein Carbohydrate Amino acids Inorganic phosphorus Nitrogen Control 1.6.92 13.14 3.6 2.2 2.2 Phosphobacteria 1.82.98 14.8.6 2.13 2.84 Azospirillum 1.84.97 14.8 8.67 2.32 3.4 Rhizobium 1.86 1. 1.11 9.6 2.18 2.84 Phosphobacteria 2.3 1. 1.27 12.24 2.72 3.62 Rhizobium + Azospirillum 2.34 1.1 1.1 13.37 2.74 3.62 Rhizobium+Phophobacteria 2.1 1.1 1.9 13.37 2.66 3.82 4.4 1.44 1.74 18.36 3.2 4.8 Table. 6 Effect of biochemical parameters of cowpea plants inoculated with bacterial biofertilizers Chlorophyll Protein Carbohydrate Amino acids Inorganic phosphorus Nitrogen Control.7.2 11. 2.2 2.8.68 Phosphobacteria 1.6.3 14.1.1 2.26.88 Azospirillum 1.37.27 14.8.6 2.13.88 Rhizobium 1.7.33 14.8 7.6 2.26.68 Phosphobacteria 1.6.62 1.11 9.69 2.8 1.7 Rhizobium + Azospirillum 1.91.4 1.27 9.18 2.4 1.66 Rhizobium+Phophobacteria 1.99.6 1.1 11.73 2.64 1.86 2.21 1.17 1.7 11.7 2.9 2.64 Table. 7 Effect of biochemical parameters of cowpea plants inoculated with bacterial biofertilizers Ascorbic Reducing Alkaline Ash acid sugar phosphatase Control.8 1.62 3.29 3 Phosphobacteria.9 1.6 4.37 Azospirillum.9 1.9 4.3 4 Rhizobium.8 1.78 4.39 4 Phosphobacteria 2.34 3.33 8.4 Rhizobium + Azospirillum 2.23 2.1 8.8 Rhizobium+Phophobacteria 2.4 3.83 8.7 9 Glutamate dehydrogenase 2.6 4. 9.91 1 Table. 8 Effect of biochemical parameters of cowpea plants inoculated with bacterial biofertilizers Ascorbic Reducing Alkaline Ash acid sugar phosphatase Control.12 1.8 3.16 2 Phosphobacteria.42 1.9 4.31 6 Azospirillum.3 3.4 4.37 4 Rhizobium.8 1.9 4.2 Phosphobacteria 2.7 3.8 3.62 6 Rhizobium + Azospirillum 2.1 3.3 3.47 4 Rhizobium+Phophobacteria 2.1 3.7.62 6 Glutamate dehydrogenase 2.37 3.9 7.82 6 37

Figure 1. Analysis of amino acids and lipids in cowpea plants by chromatography technique. Figure 4. Statistical analysis of morphological parameters of green gram plants Rf values 1.8.6.4.2 2 1 1 C T 1 T 2 T 3 T 4 T T 6 T 7 A m i n o a c i d s L i p i d s C T1 T2 T3 T4 T T6 T7 Mean SD SE Figure 2. Analysis of amino acids and lipids in green gram plants by chromatography technique. Rf values 1.8.6.4.2 C T 1 T 2 T 3 T 4 T T 6 T 7 Am in o a c id s Lip id s Figure 3. Statistical analysis of morphological parameters of cowpea plants Figure. Statistical analysis of biochemical parameters of cowpea plants 3 3 2 2 1 1 C T1 T2 T3 T4 T T6 T7 Mean SD SE Figure 6. Statistical analysis of biochemical parameters of green gram plants 2 2 1 1 2 2 1 1 C T 1 T 2 T 3 T 4 T T 6 T 7 M e a n S D S E C T1 T2 T3 T4 T T6 T7 M e an SD SE 38

Statistical analysis studied for morphological parameters of cowpea plants were higher. When compared to control plants of cowpea, Mean, Standard Deviation and Standard error were 22.83, 23.63 and.4 respectively on 6 DAS (Fig 3 and 4). Bio-chemical parameters of cowpea, Mean, Standard Deviation and Standard error were 19., 34.21 and.4 respectively on 6 DAS (Fig and 6). Thus, using bacterial members such as Rhizobium, Phosphobacteria and Azospirillum as biofertilizers, which improve the growth and yield of pulse crops and also reduce the use of chemical fertilizers. Tilak, KVBR., 1991. Bacterial biofertilizers, ICAR, New Delhi, pp 66. Tinker, PB., 1984. Plant soil. 76: 77-91. Vasudevan, P., M.S. Reddy, S. Kavitha, P. Vellusamy, K.S. David Paulraj, SM. Purosothama, V. Brindha Priyadarishini, S. Bharathkumar, J.W. Kloepper and Ganamanickam S S. 22. Role of biological preparations in enhancement of rice seedlings growth and yield. Cur Sci. 83 (9): 114-1143. References Agarwal, R., and Tilak, KVBR. 1989. Inoculation effect on yield and nitrogen uptake of various minor millets. Indian J Microbiol. 29:229-232. Balamurugan, SG., and Gurusejaran,M.1996. Effect of combined inoculation of Rhizobium sp. Azospirillum and Phosphobacteria in groundnut. Madras Agri J. 83(8): 6-8. Dwivedi, RS., R.C. Dubey and Dwivedi, SK. 1989. In: Plant - Microbe interactions (Ed. Bilgrame, K.S), Focal Theme (Botany) ISCA symposium Narendra publication House, New Delhi, pp 217-238. Gaur, AC., and Agarwal, AR. 1989. In: Plant- Microbe interactions (Ed. Bilgrame, K.S), Focal Theme (Botany) ISCA symposium Narendra publication House, New Delhi, pp 3-46. Gupta, SB., R.Mkuas and Skpatal, N. 1992. Effect of phosphorus solubilizing bacteria and thiram at different levels of phosphorus on soybean soil microflora. J Indian Soc Sci. 4: 84-86. Mohan, VR., N. Kumar, G.S. Venkataraman, V. Murugaswari and Muthusamy, SC. 1994. Effect of crude and commercial seaweed on seed germination and seedlings growth of Cajanus cajan, Phykos. 33: 47-1. Plummer, DT., 1998. An introduction to practical biochemistry, Tata McGraw Hill publishing company limited, New Delhi, pp 73-78. Shukla, AC., and Gupta, G. 1964. Effect of algal hormones on stumetal and epidermal development in rice leaves. Hydrobiologia.3:221-224. Subba Rao, NS., 1982. Biofertilizers. In: Advances publication company, New Delhi, pp 219-242. Subba Rao, NS., 22. Soil Microbiology (4 th edition of Soil microorganisms and Plant growth) Oxford and IBH publication company, New Delhi, pp 211-228. 39