Stochastic thermodynamics of information

Similar documents
Maxwell's Demon in Biochemical Signal Transduction

Information Thermodynamics on Causal Networks

Emergent Fluctuation Theorem for Pure Quantum States

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs.

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018

LANGEVIN EQUATION AND THERMODYNAMICS

MATH 317 Fall 2016 Assignment 5

Gaussian processes for inference in stochastic differential equations

A = (a + 1) 2 = a 2 + 2a + 1

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

MATH4210 Financial Mathematics ( ) Tutorial 7

Lecture 5: Integrals and Applications

Lecture 4: Integrals and applications

Convergence & Continuity

1 Review of di erential calculus

16.2 Line Integrals. Lukas Geyer. M273, Fall Montana State University. Lukas Geyer (MSU) 16.2 Line Integrals M273, Fall / 21

Chapter 6 - Random Processes

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Quasi-invariant Measures on Path Space. Denis Bell University of North Florida

Math 240 Calculus III

Linear DifferentiaL Equation

arxiv: v4 [cond-mat.stat-mech] 3 Mar 2017

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 266, Midterm Exam 1

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

Theoretical Tutorial Session 2

2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

Solution to Assignment 3

Solutions of Math 53 Midterm Exam I

Robotics. Islam S. M. Khalil. November 15, German University in Cairo

) k ( 1 λ ) n k. ) n n e. k!(n k)! n

CHAPTER 3. P (B j A i ) P (B j ) =log 2. j=1

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations

First order differential equations

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

M343 Homework 3 Enrique Areyan May 17, 2013

Path Integral methods for solving stochastic problems. Carson C. Chow, NIH

Math 162: Calculus IIA

LB 220 Homework 4 Solutions

Stochastic Differential Equations

Chapter 2 - Survival Models

Math 212-Lecture 8. The chain rule with one independent variable

Fluctuation relations and nonequilibrium thermodynamics II

Heat Equation on Unbounded Intervals

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 )

Intrinsic Noise in Nonlinear Gene Regulation Inference

Starting from Heat Equation

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

Integration by Substitution

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

Exact Simulation of Diffusions and Jump Diffusions

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Rough Burgers-like equations with multiplicative noise

WORD SERIES FOR THE ANALYSIS OF SPLITTING SDE INTEGRATORS. Alfonso Álamo/J. M. Sanz-Serna Universidad de Valladolid/Universidad Carlos III de Madrid

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22]

for any C, including C = 0, because y = 0 is also a solution: dy

March Algebra 2 Question 1. March Algebra 2 Question 1

Software Reliability & Testing

Calculus of Variations

Chemistry. Lecture 10 Maxwell Relations. NC State University

Stability of Stochastic Differential Equations

Stochastic Processes for Physicists

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye

and verify that it satisfies the differential equation:

Linear Ordinary Differential Equations

16. Working with the Langevin and Fokker-Planck equations

C2 Differential Equations : Computational Modeling and Simulation Instructor: Linwei Wang

Differential Equations Class Notes

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

SDE Coefficients. March 4, 2008

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

Math 250B Final Exam Review Session Spring 2015 SOLUTIONS

MATH20411 PDEs and Vector Calculus B

21-256: Partial differentiation

An Introduction to Bessel Functions

Distinguish between. and non-thermal energy sources.

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b]. 1.) If G(x) = x. f(t)dt = F (b) F (a) where F is any antiderivative

RESEARCH ARTICLE. Spectral Method for Solving The General Form Linear Fredholm Volterra Integro Differential Equations Based on Chebyshev Polynomials

Comparative Statics. Autumn 2018

1 + x 2 d dx (sec 1 x) =

1.1. BASIC ANTI-DIFFERENTIATION 21 + C.

Differentiation Shortcuts

A Quantum Particle Undergoing Continuous Observation

or we could divide the total time T into N steps, with δ = T/N. Then and then we could insert the identity everywhere along the path.

Sec. 1.1: Basics of Vectors

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

Solving differential equations (Sect. 7.4) Review: Overview of differential equations.

AMS 147 Computational Methods and Applications Lecture 13 Copyright by Hongyun Wang, UCSC

Transcription:

Stochastic thermodynamics of information

Introduction Textbook, Review Sekimoto, K. (2010). Stochastic energetics (Vol. 799). Springer. Seifert, U. (2012). Reports on Progress in Physics, 75(12), 126001.

Introduction Textbook, Review Sekimoto, K. (2010). Stochastic energetics (Vol. 799). Springer. Seifert, U. (2012). Reports on Progress in Physics, 75(12), 126001.

Introduction Review Parrondo, J. M., Horowitz, J. M., & Sagawa, T. (2015). Thermodynamics of information. Nature physics, 11(2), 131. My Ph, D. thesis Ito, S. (2016). Information thermodynamics on causal networks and its application to biochemical signal transduction. Springer. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., & Sano, M. (2010). Nature physics, 6(12), 988.

Introduction Ito, S., & Sagawa, T. (2013). Physical review letters, 111(18), 180603. Shiraishi, N., Ito, S., Kawaguchi, K., & Sagawa, T. (2015). New Journal of Physics, 17(4), 045012. Ito, S. (2016). Scientific reports, 6. Ito, S., & Sagawa, T. (2015). Nature communications, 6. Yamamoto, S., Ito, S., Shiraishi, N., & Sagawa, T. (2016). Physical Review E, 94(5), 052121. Ito, S. (2017). arxiv preprint arxiv:1712.04311.

Introduction

dq = du dw dw = @ U d dq du dw λ. dq ds T ds dq T

dq ds T ds bath = dq T ds + ds bath 0

m X ẍ(t) = X ẋ(t) @ x U X (x(t), X (t)) + p 2 X T X X (t) ξx x(t) t mx γx UX λx TX mx γx γx=1 ẋ(t) = @ x U X (x(t), X (t)) + p 2T X X (t)

dux. du X (x(t), X (t)) = ẋ(t) @ x U X (x(t), X (t))dt + X (t) @ X U X (x(t), X (t))dt dt dwx dqx dw X (x(t), X (t)) = X (t) @ X U X (x(t), X (t))dt dq X (x(t), X (t)) = ẋ(t) @ x U X (x(t), X (t))dt dq X = du X dw X

dq X (x(t), X (t)) = ẋ(t) @ x U X (x(t), X (t))dt ẋ(t) = @ x U X (x(t), X (t)) + p 2T X X (t) dq X =ẋ(t) ( p 2T X X (t) ẋ(t))dt jx=dqx/dt j X (t) =ẋ(t) ( p 2T X X (t) ẋ(t))

X. x. px(x) X Z H(X) = dxp X (x)lnp X (x) =h ln p X (x)i px1,,xn (x1,, xn) H(X 1,...,X n )= Z dx 1 dx n p X1,...,X n (x 1,...,x n )lnp X1,...,X n (x 1,...,x n ) = h ln p X1,...,X n (x 1,...,x n )i

Y X H(X Y )=H(X, Y ) H(Y ) X, Y I(X; Y )=H(X) H(X Y ) Z X Y I(X; Y Z) =H(X Z) H(X Y,Z)

I(X; Y )=I(Y; X) I(X; Y ) 0 I(X; Y )=0 p X,Y (x, y) =p X (x)p Y (y) x, y X Y 0 I(X; Y ) H(X Y ) H(Y X) H(X) H(Y ) I(X; Y )=H(X)+H(Y) H(X, Y ) = H(X) H(X Y ) = H(Y ) H(Y X)

px(x), qx(x) D(p X q X )= Z dxp X (x)ln p X(x) q X (x) I(X; Y )=D(p X,Y p X p Y )

D(p X q X ) 0 D(p X q X )=0 p X (x) =q X (x) x F, x G(x), px(x) Z Z F (G(x))p X (x)dx apple F G(x)p X (x)dx hf (G(x))i applef (hg(x)i) F=ln G(x)= qx(x)/px(x), D(p X q X )=hln[q X (x)/p X (x)]i appleln[hq X (x)/p X (x)i] =ln1=0

ẋ(t) = @ x U X (x(t), X (t)) + p 2T X X (t) X (t)dt = db X t x t = x(t) X t = X (t) x t+dt x t = @ x U X (x t, X t)dt + p 2T X db X t dbxt p(db Xt )= 1 p 2 dt exp apple (dbxt ) 2 2dt @[db X t] @x t+dt = 1 p 2TX xt xt+dt T (x t+dt ; x t )=p Xt+dt X t = 1 p 4 TX dt exp apple (xt+dt x t + @ x U X (x t, X t )dt) 2 4T X dt

xt+dt xt. p B X t X t+dt (x t x t+dt )=T (x t ; x t+dt ) apple p Xt+dt X t (x t+dt x t ) p B X t X t+dt (x t x t+dt ) =exp jx (t) T X dt T (x t+dt ; x t )=p Xt+dt X t = apple 1 p 4 TX dt exp (xt+dt x t + @ x U X (x t, X t )dt) 2 4T X dt j X (t) =ẋ(t) ( p 2T X X (t) ẋ(t))

D(p Xt+dt X t p Xt p B X t X t+dt p Xt+dt ) 0 D(p Xt+dt X t p Xt p B X t X t+dt p Xt+dt )= hj X (t)idt T X + H(X t+dt ) H(X t ) X ds X (t) =H(X t+dt ) H(X t ) ds bath (t) = hj X (t)i T X dt ds X (t)+ds bath (t) 0

λx m. ẋ(t) = @ x U X (x(t), X (m, t)) + p 2T X X (t) m T m (x t ; x t+dt )=p Xt+dt X t,m (x t+dt x t,m)

m p B X t X t+dt,m (x t x t+dt,m)=t m (x t ; x t+dt ) p Xt+dt X t,m (x t+dt x t,m) p B X t X t+dt,m (x t x t+dt,m) =exp apple jx (t) T X dt j X (t) =ẋ(t) ( p 2T X X (t) ẋ(t))

D(p Xt+dt X t,m p Xt,M p B X t X t+dt,m p Xt+dt,M ) 0 D(p Xt+dt X t,m p Xt,M p B X t X t+dt,m p Xt+dt,M )= X hj X (t)i T X dt + H(X t+dt,m) H(X t,m) ds X (t) =H(X t+dt ) H(X t ) ds bath (t) = ds X (t)+ds bath (t) I(X t+dt ; M) I(X t ; M) hj X (t)i T X dt

Stochastic thermodynamics for 2D Langevin equations ẋ(t) = @ x U X (x(t),y(t)) + p 2T X X (t) ẏ(t) = @ y U Y (x(t),y(t)) + p 2T Y Y (t) ξx ξy p Xt+dt X t,y t (x t+dt x t,y t )=T X y t (x t+dt ; x t ) Ty X t (x t+dt ; x t ) Ty X t (x t ; x t+dt ) =exp apple p Yt+dt X t,y t (y t+dt x t,y t )=T Y x t (y t+dt ; y t ) jx (t)dt T X Tx Y apple t (y t+dt ; y t ) Tx Y t (y t ; y t+dt ) =exp jy (t)dt T Y j X (t) =ẋ(t) ( p 2T X X (t) ẋ(t)) j Y (t) =ẏ(t) ( p 2T Y Y (t) ẏ(t))

Stochastic thermodynamics for 2D Langevin equations D(p Xt+dt X t,y t p Yt+dt X t,y t p Xt,Y t p B X t X t+dt,y t+dt p B Y t X t+dt,y t+dt p Xt+dt,Y t+dt ) 0 D(p Xt+dt X t,y t p Yt+dt X t,y t p Xt,Y t p B X t X t+dt,y t+dt p B Y t X t+dt,y t+dt p Xt+dt,Y t+dt ) = hj X (t)idt T X X Y : hj Y (t)idt T Y + H(X t+dt,y t+dt ) H(X t,y t ) ds X,Y + ds bath,x + ds bath,y 0 ds X,Y = H(X t+dt,y t+dt ) H(X t,y t ) ds bath,x = ds bath,y = hj X (t)idt T X hj Y(t)idt T Y

Stochastic thermodynamics for 2D Langevin equations D(p Xt+dt X t,y t p Xt,Y t,y t+dt p B X t X t+dt,y t+dt p Yt,X t+dt,y) 0 D(p Xt+dt X t,y t p Xt,Y t,y t+dt p B X t X t+dt,y t+dt p Yt,X t+dt,y t+dt ) = hj X (t)idt T X + H(X t+dt ) H(X t )+I(X t ; {Y t,y t+dt }) I(X t+dt ; {Y t,y t+dt }) X: ds X (t) =H(X t+dt ) H(X t ) ds bath,x = hj X (t)idt T X ds X + ds bath,x I(X t+dt ; {Y t,y t+dt }) I(X t ; {Y t,y t+dt })=di

Stochastic thermodynamics for 2D Langevin equations X ds X,Y Y ds X,Y + ds bath,x + ds bath,y 0 hj X idt hj Y idt ds bath,x T X ds bath,y T Y ds X X di Y ds X + ds bath,x di hj X idt hj Y idt ds bath,x T X ds bath,y T Y

Summary