Research Article Oscillatory Criteria for Higher Order Functional Differential Equations with Damping

Similar documents
THE EXISTENCE OF SOLUTIONS FOR A CLASS OF IMPULSIVE FRACTIONAL Q-DIFFERENCE EQUATIONS

Research Article The General Solution of Impulsive Systems with Caputo-Hadamard Fractional Derivative of Order

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

To Possibilities of Solution of Differential Equation of Logistic Function

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Research Article Boltzmann s Six-Moment One-Dimensional Nonlinear System Equations with the Maxwell-Auzhan Boundary Conditions

Jordan Journal of Physics

Comparison of Differences between Power Means 1

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

The Modified Heinz s Inequality

Electromagnetic Transient Simulation of Large Power Transformer Internal Fault

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

A New Generalized Gronwall-Bellman Type Inequality

The Characterization of Jones Polynomial. for Some Knots

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

On One Analytic Method of. Constructing Program Controls

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

Query Data With Fuzzy Information In Object- Oriented Databases An Approach The Semantic Neighborhood Of Hedge Algebras

4.8 Improper Integrals

A Family of Multivariate Abel Series Distributions. of Order k

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Power Series Solutions for Nonlinear Systems. of Partial Differential Equations

The Existence and Uniqueness of Random Solution to Itô Stochastic Integral Equation

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Tight results for Next Fit and Worst Fit with resource augmentation

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Research Article Moment Inequalities and Complete Moment Convergence

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

Track Properities of Normal Chain

@FMI c Kyung Moon Sa Co.

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

Chapter 6. Infinite series

Statistics and Probability Letters

Research Article Adaptive Synchronization of Complex Dynamical Networks with State Predictor

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

A Deza Frankl type theorem for set partitions

Chapter 4. Lebesgue Integration

Epistemic Game Theory: Online Appendix

( ) () we define the interaction representation by the unitary transformation () = ()

Minimum Squared Error

International Journal of Pure and Applied Sciences and Technology

Minimum Squared Error

Contraction Mapping Principle Approach to Differential Equations

UNIVERSAL BOUNDS FOR EIGENVALUES OF FOURTH-ORDER WEIGHTED POLYNOMIAL OPERATOR ON DOMAINS IN COMPLEX PROJECTIVE SPACES

NUMERICAL SOLUTION OF THIN FILM EQUATION IN A CLASS OF DISCONTINUOUS FUNCTIONS

A DECOMPOSITION METHOD FOR SOLVING DIFFUSION EQUATIONS VIA LOCAL FRACTIONAL TIME DERIVATIVE

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Attribute Reduction Algorithm Based on Discernibility Matrix with Algebraic Method GAO Jing1,a, Ma Hui1, Han Zhidong2,b

The Number of Rows which Equal Certain Row

EEM 486: Computer Architecture

A NEW TECHNIQUE FOR SOLVING THE 1-D BURGERS EQUATION

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

Integral Equations and their Relationship to Differential Equations with Initial Conditions

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 4: Trunking Theory and Grade of Service (GOS)

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Y. Guo. A. Liu, T. Liu, Q. Ma UDC

A General Dynamic Inequality of Opial Type

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Lecture 4: Piecewise Cubic Interpolation

Hidden Markov Model. a ij. Observation : O1,O2,... States in time : q1, q2,... All states : s1, s2,..., sn

Lecture 2 M/G/1 queues. M/G/1-queue

Oscillations of Hyperbolic Systems with Functional Arguments *

Research Article Some Normality Criteria of Meromorphic Functions

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

Research on Negotiation based Bargaining Strategies in e-commerce Jiang Jianhua 1,a, Zhang Guangyun 1,b, Hong Niansong 2,c

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Relative controllability of nonlinear systems with delays in control

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

кафедра математической экономики, Бакинский государственный университет, г. Баку, Азербайджанская Республика

Principle Component Analysis

Advanced Electromechanical Systems (ELE 847)

Calculus in R. Chapter Di erentiation

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

( ) ( ) ( ) ( ) ( ) ( y )

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Integration Techniques

Research Article The Group Involutory Matrix of the Combinations of Two Idempotent Matrices

New Inequalities in Fractional Integrals

Bases for Vector Spaces

Fractional Quantum Field Theory on Multifractals Sets

Wave Phenomena Physics 15c

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Software Reliability Growth Models Incorporating Fault Dependency with Various Debugging Time Lags

Key words: Fractional difference equation, oscillatory solutions,

Transcription:

Journl of Funcon Spces nd Applcons Volume 2013, Arcle ID 968356, 5 pges hp://dx.do.org/10.1155/2013/968356 Reserch Arcle Oscllory Crer for Hgher Order Funconl Dfferenl Equons wh Dmpng Pegung Wng 1 nd H C 2 1 College of Elecronc nd Informon Engneerng, Hee Unversy, Bodng 071002, Chn 2 College of Mhemcs nd Compuer Scence, Hee Unversy, Bodng 071002, Chn Correspondence should e ddressed o Pegung Wng; pgwng@ml.hu.edu.cn Receved 19 Sepemer 2012; Acceped 25 Novemer 2012 Acdemc Edor: Felz Mnhós Copyrgh 2013 P. Wng nd H. C. Ths s n open ccess rcle dsrued under he Creve Commons Aruon Lcense, whch perms unresrced use, dsruon, nd reproducon n ny medum, provded he orgnl wor s properly ced. We nvesge clss of hgher order funconl dfferenl equons wh dmpng. By usng generlzed Rcc rnsformon nd negrl vergng echnque, some oscllon crer for he dfferenl equons re eslshed. 1. Inroducon In hs pper, we consder he followng hgher order funconl dfferenl equons wh dsrued devng rgumens of he form s follows: x (n) () +p() x (n 1) () + q (, ξ) f(x[g 1 (, ξ)],...,x[g m (, ξ)]) dμ (ξ) =0, 0, (1) where n 2 s n even numer, p() C 1 ([ 0, ), R + ), q(, ξ) C([ 0, ) [, ], R + ), g (, ξ) C([ 0, ) [, ], R), lm nf,ξ [,] g (, ξ) = for I m = {1,2,...,m},ndf(u 1,...,u m ) C(R m,r) hs he sme sgn s u 1,...,u m ; when hey hve he sme sgn, μ(ξ) C([, ], R) s nondecresng, nd he negrl of (1) s Seljes one. We resrc our enon o hose soluons x() of (1) whch exs on sme hlf lner [ μ, ) wh sup{x() : T} =0for ny T μ nd ssfy (1). As usul, soluon x() of (1) s clled oscllory f he se of s zeros s unounded from ove, oherwse, s clled nonoscllory. Equon (1) s clled oscllory f ll soluons re oscllory. In recen yers, here hs een n ncresng neres n sudyng he oscllon ehvor of soluons for he dfferenl equons wh dsrued devng rgumens, ndnumerofresulshveeenoned(refero[1 3] nd her references). However, o he es of our nowledge, very lle s nown for he cse of hgher order dfferenl equons wh dmpng. The purpose of hs pper s o eslsh some new oscllon crer for (1) ynroducng clss of funcons Φ(, s, r) defned n [2] nd generlzed Rcc echnque. Frsly, we defne he followng wo clss funcons. We sy h funcon Φ = Φ(,u,v) elongs o he funcon clss X, denoed y Φ X,fΦ C(E,R),where E = {(,u,v) : 0 v u < }, whch ssfes Φ(,, v) = Φ(, v, v) = 0, Φ(, u, v) =0, v<u<nd hs he prl dervve Φ/ u on E h s loclly negrle wh respec o u n E. Le D 0 = {(, u) : 0 u<}, D={(,u): 0 u }.We sy h funcon H=H(,u)elongs o he funcon clss Y, denoed y H Y,fH(, ) = 0 for 0, H(, u) =0n D 0, H hs connuous prl dervve n D 0 wh respec o nd s. In order o prove he mn heorems, we need he followng lemms. Lemm 1 (see [4]). Le x() C n ([ 0, ), R + ),fx (n) () s of consn sgn nd no denclly zero on ny ry [ μ,+ )for μ 0, hen here exss σ μ,nnegerl(0 l n),wh n+leven for x()x (n) () 0 or n+lodd for x()x (n) () 0; nd for σ μ, x()x () () > 0, 0 l,nd ( 1) +l x()x () () > 0, l n.

2 Journl of Funcon Spces nd Applcons Lemm 2 (see [5]). If he funcon x() s s n Lemm 1 nd x (n 1) ()x (n) () 0 for σ μ, hen here exss consn θ (0, 1) such h for suffcenly lrge, here exss consn M θ >0,ssfyng x (θ) M θ n 2 x (n 1) (). (2) Lemm 3 (see [3]). Suppose h x() s nonoscllory soluon of (1).If s lm exp { p (τ) dτ} ds =, T 0 0, (3) hen x()x (n 1) () > 0 for ny lrge. 2. Mn Resuls Theorem 4. Assume h (3) holds, nd (A 1 ) here exss funcon σ() C n ([ 0, ), R + ) such h σ() = mn 1 m {, nf ξ [,] g (, ξ)}, lm σ() =. σ () σ > 0, σ n 2 () ρ n 2 >0, (M θ /2)σρ n 2 =: > 0, whereσ, ρ,nd re consns. (A 2 )f(u 1,...,u m ) s nondecresng wh u, I m,nd here exs consns N>0nd λ>0such h f(u lm nf 1,...,u m ) λ, u u 0 u N, = 0. (4) 0 If here exss funcon Φ(, u, v) X,suchhfornyl() C 1 ([ 0, ), R + ), r() C 1 ([ 0, ),R)nd 0, lm sup {Φ 2 φ (s) (s, u, v) ψ (s) By Lemm 3, here exss 1 such h x (n 1) () > 0, 1.Thus,wehve x (n) () = p() x (n 1) () q (, ξ) f(x[g 1 (, ξ)],...,x[g m (, ξ)]) dμ(ξ) 0, 1. By Lemm 1, here exss 2 > 1 such h x () > 0, 2. Furher, y Lemm 2, here exs consn M θ >0nd 3 2,suchh Se hen x σ () [ 2 ] M θσ n 2 () x (n 1) [σ ()] M θ σ n 2 () x (n 1) (), 3. y () =φ() { x(n 1) () x [σ () /2] y () = φ () y () +φ() φ () (8) (9) p () +r() + }, (10) { q (, ξ) f(x[g 1 (, ξ)],...,x[g m (, ξ)]) x [σ () /2] dμ(ξ) p() x(n 1) () x [σ () /2] where [Φ s (s, u, v) + l 2 ] }ds>0, (5) φ () =l() exp { r (s) ds}, σ () x (n 1) () x [σ () /2] 2x 2 [σ () /2] +r () + p () }. (11) In vew of (A 1 ), (A 2 ) nd he defnon of y(), φ(),wehve ψ () =φ() {λ q (, ξ) dμ (ξ) +r 2 () Then (1) s oscllory. r () p () p2 () 4 }. Proof. Suppose o he conrry h (1) hs nonoscllory soluon x(). Whou loss of generly, we my suppose h x() s n evenully posve soluon. From he condons of g (, ξ) nd f(u 1,...,u m ), here exss 0,suchh x () >0, x[g (, ξ)] >0, f(x[g 1 (, ξ)],...,x[g m (, ξ)])>0,, I m. (6) (7) y () φ () y () +φ() φ () { p() x(n 1) () x [σ () /2] λ q (, ξ) dμ (ξ) = y2 () φ () [ x(n 1) 2 () x [σ () /2] ] +r () + p () } + l () y () l () ψ(), (12) where ψ() = φ(){λ q(, ξ)dμ(ξ)+r2 () r () p ()/ p 2 ()/4}.

Journl of Funcon Spces nd Applcons 3 Mulplyng (12) yφ 2 (, u, v) nd negrng from 3 o,wehve Φ 2 (s, u, v) ψ (s) ds 3 Φ 2 (s, u, v) [ y (s) + l (s) y (s)]ds 3 l (s) Φ 2 (s, u, v) y2 (s) 3 φ (s) ds. (13) Inegrng y prs nd usng negrl vergng echnque, we hve hus Φ 2 (s, u, v) ψ (s) ds 3 lm sup 3 φ (s) 3 { [Φ s (s, u, v) + l 2 ] ds { Φ (s, u, v) y (s) φ (s) φ (s) { 3 φ (s) [Φ s (s, u, v) + l ] } 2 } ds } [Φ s (s, u, v) + l 2 ] ds, {Φ 2 φ (s) (s, u, v) ψ (s) 3 (14) [Φ s (s, u, v) + l 2 ] }ds 0, (15) whch conrdcs (5). Ths complees he proof of Theorem 4. If we choose Φ(, u, v) = H 1 (, u)h 2 (u, v), whereh 1, H 2 Y.ByTheorem 4, we hve he followng resuls. Corollry 5. Assume h (3), (A 1 ),nd(a 2 ) hold. If here exs H 1,H 2 Ysuch h for ech 0, lm sup H 1 (s, u) H 2 (u, v) {ψ(s) [h 1 (s, u) +h 2 (u, v)] 2 }ds>0, 4 (16) where h 1 nd h 2 re defned y H 1 (, u)/ u = h 1 (, u)h 1 (, u), H 2 (u, v)/ u = h 2 (u, v)h 2 (u, v),nd ψ () =λ q (, ξ) dμ (ξ) p () p2 () 4. (17) Then (1) s oscllory. If we choose l() = 1, r() = 0, nd le Φ(, u, v) = ( u)(u v) α,α>1/2,ytheorem 4,wehvehefollowng corollry. Corollry 6. Assume h (3), (A 1 ),nd(a 2 ) hold. If here exss consn α>1/2such h for ech 0, lm sup 1 2α+1 (s u) 2 (u v) 2α ψ(s) ds > α (2α 1)(2α + 1), where ψ() s defned s n Corollry 5.Then(1) s oscllory. Theorem 7. Assume h (3) holds, nd (18) (A 3 ) here exs funcons γ () C n ([ 0, ), R + ),suchh γ () mn 1 m {, nf ξ [,] g (, ξ)}, lm γ () =, γ () γ >0,whereγ re consns, I m ; (A 4 ) here exs consns λ [0, 1] nd λ>0,suchh γ n 2 m =1 λ γ () >0, f(u 1,...,u m ) λ 1 u 1 + +λ m u m λ. (19) () ρ n 2 0, (M θ /2) m =1 λ γ ρ n 2 ()=:>0,where ρ nd re consns, I m. If here exss funcon Φ X,suchhfornyl() C 1 ([ 0, ), R + ), r() C 1 ([ 0, ), R), nd 0,nd(5) holds, where φ() s defned s n Theorem 4: ψ () =φ() {λ q (, ξ) dμ (ξ) Then (1)soscllory. +r 2 () r () p () p2 () 4 }. (20) Proof. Suppose o he conrry h (1) hs nonoscllory soluon x(). Whou loss of generly, we my suppose h x() s n evenully posve soluon. Smlr o he proof of Theorem 4, here exss 0,suchhx[g (, ξ)] > 0, x[γ ()] > 0, x () > 0, f(x[g 1 (,ξ)],...,x[g m (, ξ)]) > 0, x (n 1) () > 0,ndx (n) () 0,for, I m.se x (n 1) () y () =φ() { m =1 λ x[γ () /2] p () +r() + }, (21)

4 Journl of Funcon Spces nd Applcons hen y () = φ () y () +φ() φ () { p() x (n 1) () m =1 λ x[γ () /2] q (, ξ) f(x[g 1 (, ξ)],...,x[g m (, ξ)]) m =1 λ x[γ () /2] dμ(ξ) m =1 x (n 1) () 2{ m =1 λ x[γ () /2]} 2 λ x [γ ()]γ () +r () + p () }. (22) If here exss funcon Φ X,such h for ny l() C 1 ([ 0, ), R + ), r() C 1 ([ 0, ), R), nd(5) holds, where φ() sdefnedsntheorem 4: ψ () =φ() { q (, ξ) dμ (ξ) Then (1) s oscllory. +r 2 () r () p () p2 () 4 }. (25) Proof. Suppose o he conrry h (1) hs nonoscllory soluon x(). Whou loss of generly, we my suppose h x() s n evenully posve soluon. Smlr o he proof of Theorem 4, here exss 0,when, nd we hve x[g (, ξ)] > 0, x[γ ()] > 0, x () > 0, f(x[g 1 (,ξ)],...,x[g m (, ξ)]) > 0, x (n 1) () > 0,ndx (n) () 0, I m.se In vew of (A 3 ), (A 4 ) nd he defnon of y(), φ(),wehve y () y2 () φ () + l () y () l () ψ(). (23) The followng proof s smlr o Theorem 4,ndweomhe dels. Ths complees he proof of Theorem 7. hen x (n 1) () y () =φ() { f(x[γ 1 () /2]+ +x[γ m () /2]) y () +r() + p () }, (26) Smlr o Corollres 5 nd 6, wehvehefollowng corollres. Corollry 8. Assume h (3), (A 3 ),nd(a 4 ) hold. If here exs H 1,H 2 Ysuch h for ech 0,nd(16) holds, where h 1,h 2 re defned s n Corollry 5: ψ () = λ q (, ξ) dμ (ξ) p () p2 () 4. (24) Then (1) s oscllory. Corollry 9. Assume h (3), (A 3 ),nd(a 4 ) hold. If here exss consn α > 1/2 such h for ech 0,nd (18) holds. where ψ() s defned s n Corollry 8, hen(1) s oscllory. For he cse of he funcon f(u 1,...,u m ) wh monooncy, we hve he followng heorem. Theorem 10. Assume h (3), (A 3 ) hold, nd (A 5 ) here exs f/ u nd f/ u λ 0,suchh m =1 λ γ () > 0, whereλ s consns. γ n 2 ρ n 2 0, (M θ /2) m =1 λ γ ρ n 2 () =: > 0,nwhchρ nd re consns, I m. = φ () y () +φ() φ () { p() x (n 1) () f(x[γ 1 () /2]+ +x[γ m () /2]) q (, ξ) f(x[g 1 (, ξ)],...,x[g m (, ξ)]) f(x[γ 1 () /2]+ +x[γ m () /2]) dμ(ξ) m =1 x (n 1) () 2{f (x [γ 1 () /2]+ +x[γ m () /2])} 2 λ x [γ ()]γ () +r () + p () }. (27) In vew of (A 3 ), (A 5 ) nd he defnon of y(), φ(),wehve y () y2 () φ () + l () y () l () ψ(). (28) The followng proof s smlr o Theorem 4, weomhe dels. Ths complees he proof of Theorem 10. Smlr o Corollres 5 nd 6, wehvehefollowng corollres.

Journl of Funcon Spces nd Applcons 5 Corollry 11. Assume h (3), (A 3 ),nd(a 5 ) hold. If here exs H 1,H 2 Ysuch h for ech 0,nd(16) holds, where h 1,h 2 re defned s n Corollry 5: ψ () = q (, ξ) dμ (ξ) p () p2 () 4. (29) Then (1) s oscllory. Corollry 12. Assume h (3), (A 3 ),nd(a 5 ) hold. If here exss consn α > 1/2 such h for ech 0,nd (18) holds. where ψ() s defned s n Corollry 11. Then(1) s oscllory. 3. Exmples Exmple 13. Consder he followng equon x (4) () + 1 π/2 x(3) () 0 ξ 2 2x (+sn ξ) dξ = 0, 2 exp ( x 2 (+cos ξ)) References [1] P. Wng nd M. Wng, Oscllon of clss of hgher order neurl dfferenl equons, Archvum Mhemcum, vol. 40,no.2,pp.201 208,2004. [2] Y. G. Sun, Oscllon of second order funconl dfferenl equons wh dmpng, Appled Mhemcs nd Compuon,vol.178,no.2,pp.519 526,2006. [3] P. G. Wng nd X. Lu, Inervl oscllon for some nds of even-order nonlner dfferenl equons, Chnese Journl of Engneerng Mhemcs,vol.22,no.6,pp.1031 1038,2005. [4] I. T. Kgurdze, On he oscllory chrcer of soluons of he equon d m u/d m + () u n sgnu = 0[J], Memchesl Sorn,vol.65,pp.172 187,1964(Russn). [5] C. Phlos, A new creron for he oscllory nd sympoc ehvor of dely dfferenl equons, L Acdéme Polonse des Scences. Bullen. Sére des Scences Mhémques,vol.29, no.7-8,pp.367 370,1981. 1, (30) where u 1 = x( + cos ξ), u 2 = x( + sn ξ), ovously f(u 1,u 2 )/u 2 1=λ.Choosngσ=1, ρ=1,hen=m θ /2, nd lm sup 1 2α+1 =( M θ 2 + 1 ) lm sup 4 0 (s u) 2 (u v) 2α ( M θ 2s 2 + 1 4s 2 )ds 1 2α+1 0 (s u) 2 (u v) 2α 1 s 2 ds (31) =( M θ 2 + 1 4 ) 1 α (2α + 1)(2α 1). Thus, here exss consn α>1/2,suchh(m θ /2+1/4) > α 2,hs, ( M θ 2 + 1 4 ) 1 α (2α + 1)(2α 1) > α (2α + 1)(2α 1). (32) By Corollry 6,hen(30)soscllory. Exmple 14. Consder he followng equon x (4) () + 1 1 ξ x(3) () + 0 2 [x( ξ) +x(+ξ) +x 3 ( ξ) +x 5 (+ξ)]dξ=0, (33) where f(u 1,u 2 ) = u 1 +u 2 +u 3 1 +u5 2,ovously f/ u 1 = 1+3u 2 1 1, f/ u 2 =1+5u 4 2 1.Choosngλ =1, γ =1, ρ =1,nd=1,2,hen=M θ.bycorollry 12, hen(33) s oscllory. Acnowledgmens The uhors would le o hn he revewers for her vlule suggesons nd commens. The reserch ws suppored y he Nurl Scence Foundon of Chn (11271106).

Advnces n Operons Reserch Advnces n Decson Scences Journl of Appled Mhemcs Alger Journl of Proly nd Sscs The Scenfc World Journl Inernonl Journl of Dfferenl Equons Sum your mnuscrps Inernonl Journl of Advnces n Comnorcs Mhemcl Physcs Journl of Complex Anlyss Inernonl Journl of Mhemcs nd Mhemcl Scences Mhemcl Prolems n Engneerng Journl of Mhemcs Dscree Mhemcs Journl of Dscree Dynmcs n Nure nd Socey Journl of Funcon Spces Asrc nd Appled Anlyss Inernonl Journl of Journl of Sochsc Anlyss Opmzon