On Normal Numbers. Theodore A. Slaman. University of California Berkeley

Similar documents
Exponents of irrationality and transcendence and effective Hausdorff dimension

A COMPUTABLE ABSOLUTELY NORMAL LIOUVILLE NUMBER. 1. The main result

Irrationality Exponent, Hausdorff Dimension and Effectivization

Kolmogorov Complexity and Diophantine Approximation

Alan Turing s Contributions to the Sciences

Alan Turing in the Twenty-first Century: Normal Numbers, Randomness, and Finite Automata. Jack Lutz Iowa State University

Strong Normality of Numbers

Irrationality exponent and rational approximations with prescribed growth

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

The Mysterious World of Normal Numbers

ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS

Effective Randomness and Continuous Measures

ON THE APPROXIMATION TO ALGEBRAIC NUMBERS BY ALGEBRAIC NUMBERS. Yann Bugeaud Université de Strasbourg, France

Randomness Beyond Lebesgue Measure

Numération : mathématiques et informatique

NOTES ON IRRATIONALITY AND TRANSCENDENCE

METRIC DIOPHANTINE APPROXIMATION ON THE MIDDLE-THIRD CANTOR SET

Continued Fractions New and Old Results

Hausdorff Measures and Perfect Subsets How random are sequences of positive dimension?

New methods for constructing normal numbers

The Metamathematics of Randomness

Combinatorics, Automata and Number Theory

On Martin s Conjecture

Real Variables: Solutions to Homework 3

QUARTIC POWER SERIES IN F 3 ((T 1 )) WITH BOUNDED PARTIAL QUOTIENTS. Alain Lasjaunias

On approximation of real, complex, and p-adic numbers by algebraic numbers of bounded degree. by K. I. Tsishchanka

Conference on Diophantine Analysis and Related Fields 2006 in honor of Professor Iekata Shiokawa Keio University Yokohama March 8, 2006

Kolmogorov-Loveland Randomness and Stochasticity

DIOPHANTINE APPROXIMATION AND CONTINUED FRACTIONS IN POWER SERIES FIELDS

Part IA Numbers and Sets

Report on some recent advances in Diophantine approximation

Champernowne s Number, Strong Normality, and the X Chromosome. by Adrian Belshaw and Peter Borwein

Correspondence Principles for Effective Dimensions

TRANSCENDENTAL NUMBERS AND PERIODS. Contents

METRICAL RESULTS ON THE DISTRIBUTION OF FRACTIONAL PARTS OF POWERS OF REAL NUMBERS

Approximation of complex algebraic numbers by algebraic numbers of bounded degree

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014

FURTHER NUMBER THEORY

Continued Fractions New and Old Results

Verónica Becher, Yann Bugeaud & Theodore A. Slaman

Note An example of a computable absolutely normal number

Probability and Measure

Lebesgue Measure and The Cantor Set

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

Kolmogorov-Loveland Randomness and Stochasticity

uniform distribution theory

Randomness and Recursive Enumerability

Results and open problems related to Schmidt s Subspace Theorem. Jan-Hendrik Evertse

Structure of R. Chapter Algebraic and Order Properties of R

Uniform Diophantine approximation related to b-ary and β-expansions

Automatic Sequences and Transcendence of Real Numbers

Introduction to Hausdorff Measure and Dimension

Lebesgue Measure on R n

+ ε /2N) be the k th interval. k=1. k=1. k=1. k=1

#A5 INTEGERS 18A (2018) EXPLICIT EXAMPLES OF p-adic NUMBERS WITH PRESCRIBED IRRATIONALITY EXPONENT

A UNIVERSAL SEQUENCE OF CONTINUOUS FUNCTIONS

THE REAL NUMBERS Chapter #4

In N we can do addition, but in order to do subtraction we need to extend N to the integers

Lebesgue Measure on R n

Root separation for irreducible integer polynomials

Rational numbers with purely periodic beta-expansion. Boris Adamczeswki, C. Frougny, A. Siegel, W.Steiner

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text.

arxiv: v1 [math.nt] 5 Mar 2019

2.2 Some Consequences of the Completeness Axiom

Measure Theory. John K. Hunter. Department of Mathematics, University of California at Davis

Contents. 1 Preliminaries 3. Martingales

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Erdős and arithmetic progressions

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

A Geometric Proof that e is Irrational and a New Measure of its Irrationality

Master of Arts In Mathematics

We denote the space of distributions on Ω by D ( Ω) 2.

CENTRAL LIMIT THEOREM AND DIOPHANTINE APPROXIMATIONS. Sergey G. Bobkov. December 24, 2016

On the rational approximation to the Thue Morse Mahler number. Yann BUGEAUD

dynamical Diophantine approximation

An Introduction to Ergodic Theory Normal Numbers: We Can t See Them, But They re Everywhere!

Mathematical Methods for Physics and Engineering

LECTURE 22: COUNTABLE AND UNCOUNTABLE SETS

INTRODUCTION TO FRACTAL GEOMETRY

arxiv: v1 [math.co] 8 Feb 2013

Math 172 HW 1 Solutions

Constructive Dimension and Weak Truth-Table Degrees

California: Algebra 1

ON SPECTRAL CANTOR MEASURES. 1. Introduction

Expansions of quadratic maps in prime fields

Infinite Continued Fractions

On Schmidt s Subspace Theorem. Jan-Hendrik Evertse

Department of Mathematics University of North Texas Denton, TX January 28, 2013 SOME PROBLEMS AND IDEAS OF ERDŐS IN ANALYSIS AND GEOMETRY

Roth s Theorem on Arithmetic Progressions

INDEPENDENCE, RELATIVE RANDOMNESS, AND PA DEGREES

Reconciling data compression and Kolmogorov complexity

Turing s unpublished algorithm for normal numbers

The Kakeya Problem Connections with Harmonic Analysis Kakeya sets over Finite Fields. Kakeya Sets. Jonathan Hickman. The University of Edinburgh

A. Iosevich and I. Laba January 9, Introduction

Turing s unpublished algorithm for normal numbers

A LITTLE REAL ANALYSIS AND TOPOLOGY

On the classification of irrational numbers

INTEGERS CONFERENCE 2013: ERDŐS CENTENNIAL

The dimensional theory of continued fractions

Problems for Chapter 3.

Transcription:

1/24 On Normal Numbers Theodore A. Slaman University of California Berkeley Joint work with Verónica Becher, and in part with Pablo Heiber, Yann Bugeaud and Jan Reimann CApril 29, 2015

2/24 Émile Borel (1909): Normal Numbers Definition Let ξ be a real number. ξ is simply normal to base b iff in its base-b expansion, (ξ) b, each digit appears with limiting frequency equal to 1/b. ξ is normal to base b iff in (ξ) b every finite pattern of numbers occurs with limiting frequency equal to the expected value 1/b l, where l is the pattern length. ξ is absolutely normal iff it is normal to every base b.

3/24 Normality If the sequence of digits in (ξ) b were chosen independently at random, then the simple normality of ξ in base b would be a special case of the Law of Large Numbers. Theorem (Borel 1909) Almost all real numbers are absolutely normal. Problem Give one example of an absolutely normal number. It is not known whether any (or all) of the familiar irrational numbers are absolutely normal: π, e, 1 + 5 2 Conjecture (Borel 1950) Irrational algebraic numbers are absolutely normal.

4/24 Examples First constructions of absolutely normal numbers by Lebesgue and Sierpiński, independently, 1917. Theorem (Champernowne 1933) 0.123456789101112131415161718192021222324... is normal to base ten. An elementary but intricate counting argument shows that Champernowne s number is normal to base 10, but it is not known whether it is absolutely normal.

5/24 A computable example Theorem (Turing 1938 (see Becher, Figueira and Picchi 2007)) There is a computable absolutely normal number. Other computable instances Schmidt 1961/1962, Becher and Figueira 2002.

6/24 Absolutely normal numbers in just above quadratic time Theorem (Becher, Heiber and Slaman 2013) Suppose f : N N is a computable non-decreasing unbounded function. There is an algorithm to compute an absolutely normal number ξ such that, for any base b, the algorithm outputs the first n digits in (ξ) b after O(f (n) n 2 ) elementary operations. Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument for an absolutely normal number in polynomial time, based on polynomial-time martingales.

7/24 Discrepancy Let {b n ξ} denote the fractional part of b n ξ. Theorem (Wall 1949) A real number ξ is normal to base b iff the sequence ({b n ξ} : 0 n < ) is uniformly distributed in [0, 1]: for every 0 u < v 1, #{n : 1 n N, u {b n ξ} < v} lim = (v u). N N Definition Let N be a positive integer. Let ξ 1,..., ξ N be real numbers in [0, 1]. The discrepancy of ξ 1,..., ξ N is D(ξ 1,..., ξ N ) = sup 0 u<v 1 # {n : 1 n N, u ξ n < v} N (v u). A real number ξ is normal to base b iff lim N D({bn ξ} : 0 n N) = 0.

8/24 The output of the effective algorithm in base 10 Programmed by Martin Epszteyn 0.4031290542003809132371428380827059102765116777624189775110896366... First 250000 digits output by the algorithm Plotted in 500x500 pixels, 10 colors First 250000 digits of Champernowne Plotted in 500x500 pixels, 10 colors

9/24 Normality to Different Bases There is one readily-identified connection between normality to one base and normality to another. Definition For natural numbers b 1 and b 2 greater than 0, we say that b 1 and b 2 are multiplicatively dependent if they have a common power. Theorem (Maxfield 1953) If b 1 and b 2 are multiplicatively dependent bases, then, for any real ξ, ξ is normal to base b 1 iff it is normal to base b 2.

10/24 Multiplicative independence Theorem (Schmidt 1961/62) Let R be a subset of the natural numbers greater than or equal to 2 which is closed under multiplicative dependence. There is a real ξ such that ξ is normal to every base in R and not normal to any integer base in the complement of R.

11/24 Normal numbers and Weyl s criterion Theorem (Weyl s Criterion) A sequence (ξ n : n 1) is uniformly distributed modulo one iff for every complex-valued 1-periodic continuous function f, 1 N 1 lim f (ξ n) = f (x)dx. N N n=1 0 1 N That is, iff for every non-zero integer t, lim e 2πitξn = 0 N N n=1 Thus, ξ is normal to base b iff for every non-zero t N 1 1 lim e 2πitbnξ = 0. N N n=0 Schmidt s argument rested upon subtle estimates of such harmonic sums.

12/24 A Logician s Analysis of Independence Between Bases. Let S be the set of minimal representatives of the multiplicative dependence classes. Theorem (Becher and Slaman 2013) Let R be a Π 0 3 subset of S. There is a real ξ such that ξ is normal to every base in R and not normal to any of the other elements of S. Furthermore, ξ is uniformly computable in the Π 0 3 formula which defines R. An index set calculation: Theorem (Becher and Slaman 2013) The set of real numbers that are normal to at least one base is Σ 0 4-complete. A fixed point: Theorem (Becher and Slaman 2013) For any Π 0 3 formula ϕ there is a computable real ξ such that for all b in S, ξ is normal to base b iff ϕ(ξ, b) is true.

13/24 Simple Normality ξ is simply normal to base b iff each digit appears with limiting frequency equal to 1/b in the base-b expansion of ξ. Necessary Conditions: Theorem For any base b and real number ξ, the following hold. For any positive integers k and m, if ξ is simply normal to base b km then ξ is simply normal to base b m. (Long 1957) If there are infinitely many positive integers m such that ξ is simply normal to base b m, then ξ is simply normal to all powers of b.

13/24 Simple Normality ξ is simply normal to base b iff each digit appears with limiting frequency equal to 1/b in the base-b expansion of ξ. Necessary and Sufficient Conditions: Theorem (Becher, Bugeaud and Slaman 2013) Let M be a set of natural numbers greater than or equal to 2 such that the following necessary conditions hold. For any b and positive integers k and m, if b km M then then b m M. For any b, if there are infinitely many positive integers m such that b m M, then all powers of b belong to M. There is a real number ξ such that for every base b, ξ is simply normal to base b iff b M. Thanks to Mark Haiman for providing a needed result in combinatorial number theory.

14/24 A Comment on Hausdorff Dimension In the above, we exhibit a Cantor-like construction of a fractal such that its uniform measure concentrates on reals of the desired simple-normality type. By inspection of the construction, there are such fractals with Hausdorff dimension arbitrarily close to one.

15/24 Irrationality Exponents Definition (originating with Liouville 1855) For a real number ξ, the irrationality exponent of ξ is the least upper bound of the set of real numbers z such that 0 < ξ p q < 1 q z is satisfied by an infinite number of integer pairs (p, q) with q > 0. When z is large and 0 < ξ p q < 1, then p/q is a good approximation qz to ξ when seen in the scale of 1/q. The irrationality exponent of ξ is a indicator for how well ξ can be approximated by rational numbers (a linear version of Kolmogorov complexity).

16/24 Context Liouville numbers are those with infinite irrationality exponent. Almost all real numbers have irrationality exponent equal to 2. (Roth 1955) Irrational algebraic numbers have irrationality exponent equal to 2. We will compute real numbers so as to control their irrationality exponents in combination with other properties.

17/24 The Jarník-Besicovitch Theorem Theorem (Jarník 1929 and Besicovitch 1934) For every real number a greater than or equal to 2, the set of numbers with irrationality exponent equal to a has Hausdorff dimension 2/a. By direct application of the definitions, the Hausdorff dimension of the set of numbers with irrationality exponent a is less than or equal to 2/a. The other inequality comes from an early application of fractal geometry.

18/24 Jarník s Fractal For each real number a greater than 2, Jarník gave a Cantor-like construction of a fractal J contained in [0, 1] of Hausdorff dimension 2/a such that the uniform measure ν on J satisfies the following: The set of numbers with irrationality exponent greater than or equal to a has ν-measure equal to 1. For all b greater than a, the set of numbers with irrationality exponent greater than or equal to b has ν-measure equal to 0.

19/24 Computing Real Numbers with Specified Irrationality Exponent Theorem (Becher, Bugeaud and Slaman) A real number a is the irrationality exponent of a recursive real number iff a is right recursively enumerable relative to 0.

20/24 Further into Normality Definition Suppose µ is a measure on R. The Fourier Transform ˆµ of µ is given by ˆµ(t) = e 2πitξ dµ(ξ) Theorem (Davenport, Erdős and LeVeque 1963) If µ is a measure on R such that ˆµ vanishes at sufficiently quickly, then µ-almost every real number is absolutely normal.

21/24 Absolutely Normal Liouville Numbers (Kaufman 1981) For any real number a > 2, there is a measure ν on the Jarník fractal for a such that the Fourier transform of ν vanishes at infinity. The measure ν is a smooth version of the uniform measure. (Bluhm 2000) There is a measure ν supported by the Liouville numbers such that the Fourier transform of ν vanishes at infinity. (Bugeaud 2002) There is an absolutely normal Liouville number.

22/24 Computing Absolutely Normal Liouville Numbers Theorem (Becher, Heiber and Slaman 2013) There is a computable absolutely normal Liouville number.

23/24 Computing Numbers with Specified Irrationality Exponent and Pattern of Normality Theorem (Becher, Bugeaud and Slaman) For every for every real number a 2 and every set of bases M satisfying the conditions for simple normality, there is a real number ξ that has irrationality exponent a and is simply normal to exactly the bases in M. One considers a mix between the Jarník and Simple-Normality fractals. The uniform measure on the mixed fractal is supported by real numbers of the desired type. Further, such a ξ can be computed from a and M.

24/24 Irrationality Exponents and Effective Hausdorff Dimension Work in Progress Definition The effective Hausdorff dimension of a real number ξ is the limit infimum of the rational numbers r such that for infinitely many n the sequence of the first n digits in the binary expansion of ξ has Kolmogorov complexity less than or equal to r n. If the irrationality exponent of ξ is equal to a, then ξ has effective Hausdorff dimension less than or equal to 2/a. Theorem (Becher, Reimann and Slaman) For each recursive a 2, there is a real number ξ such that the irrationality exponent of ξ is a and the effective Hausdorff dimension of ξ is 2/a. We conjecture that for every a 2, every b in [0, 2/a] can be the effective Hausdorff dimension of some ξ with irrationality exponent a.