Instantons in supersymmetric gauge theories. Tobias Hansen Talk at tuesday s Werkstatt Seminar January 10, 2012

Similar documents
Lecture 12 Holomorphy: Gauge Theory

Lecture 7: N = 2 supersymmetric gauge theory

The Affleck Dine Seiberg superpotential

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Reφ = 1 2. h ff λ. = λ f

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide)

Aspects of SUSY Breaking

A Localization Computation in Confining Phase

15.2. Supersymmetric Gauge Theories

Some Useful Formalism for Supersymmetry

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Theory of Elementary Particles homework VIII (June 04)

Quantum Field Theory III

Lectures on Supersymmetry I

Lecture 5 The Renormalization Group

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

The rudiments of Supersymmetry 1/ 53. Supersymmetry I. A. B. Lahanas. University of Athens Nuclear and Particle Physics Section Athens - Greece

Topological DBI actions and nonlinear instantons

SUSY Breaking in Gauge Theories

Lecture 6 The Super-Higgs Mechanism

1 4-dimensional Weyl spinor

Supersymmetry Highlights. Kevin Hambleton

Techniques for exact calculations in 4D SUSY gauge theories

N=1 Global Supersymmetry in D=4

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Generalized N = 1 orientifold compactifications

Supercurrents. Nathan Seiberg IAS

NTNU Trondheim, Institutt for fysikk

Lecture 7 SUSY breaking

Supersymmetry: Fundamentals. Michael Dine

Supersymmetric Gauge Theories in 3d

Nonperturbative Study of Supersymmetric Gauge Field Theories

Seiberg Duality: SUSY QCD

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

NTNU Trondheim, Institutt for fysikk

Anomaly and gaugino mediation

Roni Harnik LBL and UC Berkeley

Contact interactions in string theory and a reformulation of QED

Some applications of light-cone superspace

Geometry and Physics. Amer Iqbal. March 4, 2010

Soft Supersymmetry Breaking in

Electric-Magnetic Duality, Monopole Condensation, And Confinement In N = 2 Supersymmetric Yang-Mills Theory

Non-SUSY BSM: Lecture 1/2

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

arxiv:hep-th/ v1 21 May 1996

Introduction to Supersymmetry

Manifestly diffeomorphism invariant classical Exact Renormalization Group

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

Supersymmetry and the LHC

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Introduction to AdS/CFT

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

t Hooft loop path integral in N = 2 gauge theories

Topological reduction of supersymmetric gauge theories and S-duality

Instantons (Preliminary version)

Aspects of N = 2 Supersymmetric Gauge Theories in Three Dimensions

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

Quantising Gravitational Instantons

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

Solution Set 8 Worldsheet perspective on CY compactification

The N = 2 Gauss-Bonnet invariant in and out of superspace

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Non-renormalization Theorem and Cyclic Leibniz Rule in Lattice Supersymmetry

S-CONFINING DUALITIES

Heisenberg-Euler effective lagrangians

Quantum Dynamics of Supergravity

Lecture 24 Seiberg Witten Theory III

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

arxiv:hep-th/ v3 18 Feb 1993

NTNU Trondheim, Institutt for fysikk

Rigid SUSY in Curved Superspace

Lecture 1. ). Since we do not see a massless photino or a selectron with mass MeV, supersymmetry, if it exists, is broken in Nature.

Intro to Supersymmetry Part I: Basics

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

MHV Vertices and On-Shell Recursion Relations

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

arxiv:hep-th/ v1 14 Dec 1994

TASI Lectures on Solitons

The most simple in some sense variant of the model is based on the SU(N) gauge group and involves N? 1 pairs of chiral matter supermultiplets S i, S 0

Introduction to Supersymmetry

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

arxiv:hep-th/ v1 14 Dec 1998

EDMs from the QCD θ term

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

Matrix Theories and Emergent Space

Lectures on Supersymmetry Breaking

Instanton constituents in sigma models and Yang-Mills theory at finite temperature

Introduction to Lattice Supersymmetry

Conformal Sigma Models in Three Dimensions

Complete Wetting of Gluons and Gluinos

Vacuum Energy and Effective Potentials

Transcription:

Instantons in supersymmetric gauge theories Tobias Hansen Talk at tuesday s Werkstatt Seminar January 10, 01 References [1] N. Dorey, T. J. Hollowood, V. V. Khoze and M. P. Mattis, The Calculus of many instantons, Phys. Rept. 371 (00) 31 [hep-th/006063]. [] S. Kovacs, N=4 supersymmetric Yang-Mills theory and the AdS / SCFT correspondence (Chapter 4), hep-th/9908171. [3] M. A. Shifman and A. I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, In *Shifman, M.A.: ITEP lectures on particle physics and field theory, vol. * 485-647 [hep-th/990018]. [4] J. Terning, Modern supersymmetry: Dynamics and duality, (International series of monographs on physics. 13) [5] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton, USA: Univ. Pr. (199) 59 p Contents 1 Introduction 1.1 Preliminary: Superspace and superfields................. 3 Instanton solutions 3.1 Supersymmetric domain wall........................ 3.1.1 Preliminary: The minimal Wess-Zumino model......... 3.1. Supersymmetric domain wall.................... 4. Instantons in Yang Mills theories without SUSY............. 6.3 Instantons in supersymmetric gauge theories............... 6.3.1 Preliminary: SUSY gauge theory................. 6.3. Construction of SUSY instantons................. 7 3 Instanton calculus 8 4 The holomorphic gauge coupling 9 1

1 Introduction The goal of this talk is to explain how to calculate VEVs of gauge theory operators in the instanton background. Doing so, one can learn something about possible nonperturbative aspects of a theory. Remember: An instantons is a topologically nontrivial stationary point of an Euclidean finite action. The VEV of an operator in pure a Yang Mills theory can be calculated using the path integral: O(x 1,..., x n ) = [Dφ]e S[φ] h O(φ(x1 ),..., φ(x n )), (1) The classical vacuum corresponds to a constant expectation value φ for the elementary fields. A perturbative series is gained by expanding the action for small fluctuations δφ around the classical vacuum. In instanton calculations one expands the action around the instanton instead of the vacuum. Let φ be an instanton solution and φ(x) = φ(x) + δφ(x) = φ(x) + h 1/ η(x) Expand S[φ] in powers of h: S[φ] = S[φ] + h ( d 4 xd 4 δ S y η(x)η(y) + O( h δφ(x)δφ(y)) φ=φ 3/ ), The VEV of an operator O[φ] can be evaluated in the semiclassical limit ( h 0) by a saddle point approximation: O(x 1,..., x n ) = [Dη]e S[φ+η] h O[(φ + η)(x i )] = [ ( = O(φ) e S h δ S det δφ(x)δφ(y)) φ=φ ] 1 (1 + O( h)). () In non-supersymmetric non-abelian gauge theories the quantum corrections turn out to be divergent in the instanton background. With supersymmetry, there are no quantum corrections to the classical vacuum, like in loop calculations a cancellation between fermions and bosons takes place. But there is a caveat: the presence of a background instanton field in general breaks supersymmetry. There are, however, so-called magic backgrounds that preserve one half of supersymmetry. This is enough to ensure the cancellation of quantum corrections. In the gauge theories any (anti-)self-dual gluon field preserves one half of supersymmetry. But these are exactly the field configurations corresponding to (anti- )instantons! I will start with a simpler (non-gauge) example where the conservation of one half of supersymmetry and subsequent cancellation of quantum corrections also takes place: the domain wall in the minimal Wess Zumino model. Then I will discuss

non-supersymmetric Yang Mills instantons and sketch how SUSY instantons are constructed out of them. The section on instanton calculus outlines how the path integral calculation is performed. If there is enough time left, I will discuss in the end how the holomorphic gauge couling obtains instanton corrections. This is somewhat out of the line of this talk, but it is a good preparation for the following talks, where holomorphy arguments will play an important role. 1.1 Preliminary: Superspace and superfields The four-dimensional space x can be promoted to superspace by adding four Grassmann coordinates θ α and θ α, (α, α = 1, ). The coordinate transformations (x, θ α, θ α ) (x + iθσ ε iεσ θ, θα + ε α, θ α + ε α ) (3) (with σ = {1, τ}, τ Pauli the matrices) add SUSY to the translational and Lorentz transformations. Since the SUSY transformation mixes between bosonic and fermionic fields, single bosonic or fermionic fields can not be SUSY invariant. SUSY invariant fields are called Superfields and contain always both bosonic and fermionic components. The minimal supermultiplet of fields includes one complex scalar field φ(x) (two bosonic states) and one complex Weyl spinor ψ α (x), α = 1, (two fermionic states). Both fields are united in one chiral superfield, Φ(x L, θ) = φ(x L ) + θ α ψ α (x L ) + θ F (x L ), (4) It is called chiral because it is defined on the first of the two invariant subspaces {x L, θ α} and {x R, θ α } of superspace (x L,R = x iθσ θ). It s conjugate Φ(xR, θ) is defined on the other subspace and is thus called antichiral. F is an auxiliary component, that means it appears in the Lagrangian without the kinetic term. Instanton solutions.1 Supersymmetric domain wall.1.1 Preliminary: The minimal Wess-Zumino model The minimal Wess-Zumino model contains one chiral superfield Φ(x L, θ) and its complex conjugate Φ(x R, θ). The action of the model is S = 1 d 4 x d 4 θ Φ Φ + 1 d 4 x d θ W(Φ) + 1 d 4 x d θ W( Φ). (5) 4 Note that the first term is the integral over the full superspace, while the second and the third run over the chiral subspaces. The holomorphic function W(Φ) is called the superpotential. In components the Lagrangian has the form { L = ( φ)( φ) + ψ α i α α ψ α + F F + F W (φ) 1 } W (φ)ψ + H.c.. (6) 3

From Eq. (6) it is obvious that F can be eliminated by virtue of the classical equation of motion, F = W(φ), (7) φ so that the scalar potential describing self-interaction of the field φ is V (φ, φ) = W(φ) φ. (8) If one limits oneself to renormalizable theories, the superpotential W must be a polynomial function of Φ of power not higher than three. In the model at hand, with one chiral superfield, the generic superpotential can be always reduced to the following standard form W(Φ) = m λ Φ λ 3 Φ3. (9) The quadratic term can be always eliminated by a redefinition of the field Φ. Moreover, by using the R symmetries one can always choose the phases of the constants m and λ at will. Let us study the set of classical vacua of the theory, the vacuum manifold. In the simplest case of the vanishing superpotential, W = 0, any coordinate-independent (coordinates in superspace) field Φ vac = φ 0 can serve as a vacuum. The vacuum manifold is then the one-dimensional (complex) manifold C 1 = {φ 0 }. The continuous degeneracy is due to the absence of the potential energy, while the kinetic energy vanishes for any constant φ 0. This continuous degeneracy is lifted by the superpotential. In particular, the superpotential (9) implies two classical vacua, φ vac = ± m λ. (10) Thus, the continuous manifold of vacua C 1 reduces to two points..1. Supersymmetric domain wall Field configurations interpolating between two degenerate vacua are called the domain walls. They have the following properties: (i) the corresponding solutions are static and depend only on one spatial coordinate; (ii) they are topologically stable and indestructible once a wall is created it cannot disappear. Assume for definiteness that the wall lies in the xy plane. Then the wall solution φ w will depend only on z. Since the wall extends indefinitely in the xy plane, its energy E w is infinite. The classical equation of motion is The solution is 0 = zφ m λ φ( λ λφ ). (11) φ w = m λ tanh( m z). (1) 4

Note that the parameters m and λ are not assumed to be real. A remarkable feature of this solution is that it preserves one half of supersymmetry. Indeed, the SUSY transformations (3) generate the following transformation of fields, δφ = εψ, δψ α = [ ε α F + i φ (σ ) α α ε α ]. (13) The domain wall we consider is purely bosonic, ψ = 0. Moreover, z φ w (z) = m m λ (1 tanh ( m z)) = e iη W φ = e iη F (14) φ=φ w where η = arg m3 λ. (15) The relation (14) means that the domain wall actually satisfies the first order differential equation, which is by far a stronger constraint than the classical equations of motion. Due to this feature vanishes provided that δψ α ε α + i e iη (σ z ) α α ε α (16) ε α = i e iη (σ z ) α α ε α. (17) This condition singles out two supertransformations (out of four) which do not act on the domain wall. Now, let us calculate the wall tension at the classical level. To this end we rewrite the expression for the tension as E = = = + + + dz [ z φ z φ + F F ] (18) { dz z φ + e iη F [ ]} iη φ W + e z φ + H.c. (19) dz { z φ + e iη F + [ e iη z W + H.c. ]}, (0) where F = W/ φ and it is implied that φ depends only on z. For the wall tension E w the first term vanishes and all we need to calculate is W at φ w (z = ± ) = ± m. The result is λ E w = e iη {W(φ w (z = )) W(φ w (z = ))} + H.c. = 8 m 3 3 λ. (1) The wall tension coincides with the modulus of the topological charge Z which is defined as E w = Z, () Z = {W(φ(z = )) W(φ(z = ))} = 8 m3 3 λ. (3) Note that the phase of Z coincides with η introduced in Eq. (15). Such states which satisfy the first order equations and have masses that coincide with the topological charges are called BPS or BPS-saturated. BPS stands for Bogomolny, Prasad and Sommerfield. 5

. Instantons in Yang Mills theories without SUSY Before discussing instantons in supersymmetric theories, the pure Yang Mills instanton has to be adressed, because it is needed for the construction of the SUSY instanton. The Euclidean Yang Mills action is S YM = d 4 x Tr(F ν F ν ) (4) Since solutions of the classical equations of motion minimize the action, the can be found by calculating the lower bound of the action. 0 d 4 x Tr(F ν ± F ν ) = d 4 x Tr(F ± F F ) (5) d 4 x TrF d 4 x TrF F = 16π n, (6) where F ν = 1 ɛνρσ F ρσ is the dual field strength and n is the winding number of the gauge field. So the Euclidean action is minimized for F ν = ± F ν. (7) The solution of this equation for the SU() gauge theory and winding number 1 is the BPST-instanton A n = g 1 (x X) mσ mn (x X) + ρ, (8) with σ mn = 1 4 (σ m σ n σ n σ m ). ρ and X m are collective coordinates that parametrize different instanton solutions. ρ is the instanton size and X m its position. The SU() BPST 1-instanton has in total 8 collective coordinates, a general n-instanton in the SU(N) theory has 4nN. One can find all instantons of a pure Yang Mills theory by the ADHM construction (Atiyah, Drinfel d, Hitchin, Manin 1978)..3 Instantons in supersymmetric gauge theories.3.1 Preliminary: SUSY gauge theory To get a supersymmetric gauge theory, we have to introduce a SUSY analogue to a vector field. This is the vector superfield V, which is defined as a real superfield V = V. (9) A general vector superfield has many components, one of them being a vector field V = + θσ θa +.... (30) One can also make a vector superfield out of a chiral superfield Φ by taking Φ + Φ. This contains a term Φ + Φ = + θσ θ (i (φ φ )) +.... (31) 6

Now V V + Φ + Φ takes A A + Λ. This is the SUSY version of an Abelian gauge transformation. It can be used to put V into Wess-Zumino gauge, where for N = 1 only the following component fields are left: V = θσ θa + iθ ( θ λ) i θ (θλ) + 1 θ θ D (3) Here A is the gauge boson λ and λ are gauginos and D is an auxiliary field. Now we need a gauge invariant and supersymmetric field strength so that we can add kinetic terms to the lagrangian. One can construct the following chiral superfield out of the components of V: W α = iλ α + θ α D i (σ σ ν ) β α θ β F ν + θ σ α α λ α (33) Squaring this, we almost arrive at the superpotential for the SUSY Yang Mills action: W α W α θ = 1 F ν F ν + i F ν Fν iλσ λ + D (34) We also introduce the holomorphic gauge coupling τ = θ YM π + 4πi g (35) The SUSY Yang Mills action is 1 d 4 xd θ τ W α W α + H.c. (36) 16πi [ = d 4 x 1 4g F ν F ν θ YM 3π F ν Fν + i ] π g λσ λ + g D. (37).3. Construction of SUSY instantons For the this section a slightly more general (to cover also N = and N = 4) and Euclidean SUSY Yang Mills action is used. It is S = d 4 x Tr { 1 F mn iθ YMg 16π F F mn mn D n λa σ n λ A + D n φ a D n φ a (38) g λ A Σ AB a [φ a, λ B ] gλ A Σ aab [φ a, λ B ] 1 } g [φ a, φ b ] (39) A = 1,.., N is an R-Symmetry index and Σ AB a are associated to the different R- Symmetry groups for different N. D are covariant derivatives. φ a, a = 1,..., (N 1) are real scalar fields that are part of the vector supermultiplets for N {, 4}. For the N = 1 case it is set to zero. The equations of motions for N = 1 are thus D m F nm = g σ n {λ, λ} (40) Dλ = 0 (41) D λ = 0 (4) 7

The ADHM instanton with λ = λ = 0 is a solution of these equations. To get the general solution, 41 and 4 have to be evaluated in the ADHM background (A m = A m,adhm instanton ) of topological charge n. It can be shown that 41 has in general nn linearly independent solutions Λ i with i = 1,..., nn, while 4 has no nontrivial solutions for (n > 0). So for the general and exact N = 1 instanton λ = 0 (43) nn λ = ψ i Λ i (44) i=1 The source term in 40 vanishes because of 43, so the vector field stays the same as in pure Yang-Mills theory. The ψ i are Grassmann valued collective coordinates. For N {, 4} one can also consider fluctuations around the ADHM instanton, but now also the scalar fields φ a have to be considered. The equations of motion are now D m F nm = g σ n {λ A, λ A } + g[φ a, D n φ a ] (45) Dλ A = gσ AB a [φ a, λ B ] (46) D λ A = g Σ aab [φ a, λ B ] (47) D φ a = g [φ b, [φ b, φ a ]] + g Σ aab λ A λ B + gσ AB a λ A λb One can proceed perturbatively order by order in the coupling. For N = an exact solution can be obtained for the case that the scalar VEVs are zero. For N = 4 no exact solution is known. Approximate solutions are called quasi-instantons. 3 Instanton calculus In the introduction it was discussed how the path integral can be calculated using the saddle point approximation for one instanton. In the previous section however a continuum of instantons was found, parameterized by the collective coordinates. As before, the fields are expanded around the instantons, (48) A n (x) = A n (x; X) + δa n (x; X). (49) Since the total field does not depend on the collective coordinates X, both the instanton and the fluctuations do. The saddle point approximation can only be performed over the non-zero modes, so the fluctuations are split in zero modes δ A n and non-zero modes Ãn: δa n (x; X) = ξ δ A n + Ãn. (50) Now the integrals over the zero and non-zero modes of the gauge field are separated in the path integral { } dξ [da n ] = det g(x) [dãn]. (51) π 8

g(x) is the metric on the moduli space g ν (X) = d 4 x Trδ A n (x; X)δ ν A n (x; X). (5) The chiral fermion is split into zero and non-zero modes (it is expanded around 0). λ A (x) = λ (0)A (x; X, ψ A ) + λ A (x; X, ψ A ). (53) The anti-chiral fermions and scalar fields have no zero modes in the instanton background, so they keep their names and are treated like the non-zero modes. The fermionic integrals are separated N N { nn } [dλ A ][d λ A ] dψ ia [d λ A ][d λ A ]. (54) A=1 A=1 The integral over the non-zero modes can now be performed using the saddle point method like in the introduction. The action is expanded around the instanton: i=1 S[A n + A (0) n + Ãn, λ (0)A + λ A, λ A, φ a ] = πinτ + S kin + S int. (55) S kin denotes the kinetic terms for the non-zero mode fluctuations and S int includes interactions between zero and non-zero modes. Now the integration over the non-zero modes {Ãn, λ A, λ A, φ a } and the ghosts {b, c}, which arise from Pauli-Villars regularization, can be performed. This defines the instanton effective action S eff on the collective coordinates: e S eff := e πinτ [dã][db][dc][d λ][d λ][dφ]e S kin S int S gh (56) It turns out that S eff vanishes if the instanton is an exact solution. For N = 4 and N = with non-vanishing VEVs, it can be determined perturbatively in g using the Feynman rules emerging from S kin and S int. The integrals over the expansion coefficients of the zero modes ξ can be traded for integrals over the collective coordinates. The derivatives of the instanton with respect to the collective coordinates A n / X are tangent vectors pointing towards directions in which the action stays minimized. This means they are a mix of zero modes and local gauge transformations. If all the A n / X are orthogonal to the gauge transformations, one can simply replace ξ δ A n by X A n / X. Otherwise a few more steps are needed. 4 The holomorphic gauge coupling Now let us determine the scale dependence of the holomorphic gauge coupling τ. It will turn out that it gets no perturbative corrections, but instead non-perturbative instanton corrections. 9

The one-loop running is given by the renormalization group equation dg d = b 16π g3, (57) where for an SU(N) gauge theory with F flavours and N = 1 SUSY b = 3N F. (58) The solution for the running coupling is 1 g () = b ( ) Λ 8π ln. (59) Λ is the intrinsic scale of the non-abelian gauge theory. It is written as a modulus, because it will be turned into a complex number next. The one-loop running version of τ is τ 1 loop = θ YM π + 4πi g () = θ YM π + b πi ln The holomorphic intrinsic scale is now defined as so τ 1 loop = ( ) Λ = b ( ) Λ πi ln e iθym b. (60) Λ e iθ YM b, (61) b ( ) Λ πi ln. (6) Complex coefficients in the superpotential such as couplings or here Λ can be regarded as background fields and so the superpotential also has to be a holomorphic function of Λ. One can now determine how instanton corrections depend on Λ. The Euclidean action is minimized by setting λ = λ = D = 0 and F ν = F ν, as in the non-susy case. Then the n-instanton action S n inst becomes S n inst = 4π n g () iθ YMn = πinτ 1 loop. (63) This leads to n-instanton effects being proportional to ( ) bn e S n inst = e πinτ 1 loop Λ =. (64) Let s get to τ being holomorphic in Λ. It can thus be written as τ(λ; ) = b ( ) Λ πi ln + f(λ; ), (65) with f(λ; ) holomorphic in Λ. In the weak coupling limit Λ 0 this must reduce to the one-loop solution, so f(λ; ) must have a Taylor series in positive powers of Λ. 10

Looking at the path integral DADλDDe is, (66) one sees that θ YM θ YM + π is a symmetry of the theory, because S depends only on θ YM through the term which is an integer times θ YM. The symmetry transformation can also be expressed as Λ e πi b Λ. To respect this symmetry, the Taylor series must be in powers of Λ b. This leaves us with the final result τ(λ; ) = b ( ) Λ πi ln + ( ) bn Λ a n, (67) The new terms have the form of n-instanton corrections. There are no further perturbative corrections. n=1 11