Ultracold atoms and molecules

Similar documents
Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

The amazing story of Laser Cooling and Trapping

Production of BECs. JILA June 1995 (Rubidium)

Laser cooling and trapping

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

From laser cooling to BEC First experiments of superfluid hydrodynamics

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

Confining ultracold atoms on a ring in reduced dimensions

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Lecture 3. Bose-Einstein condensation Ultracold molecules

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Roger Ding. Dr. Daniel S. Elliott John Lorenz July 29, 2010

EYLSA laser for atom cooling

Laser Cooling of Thulium Atoms

Development of a compact Yb optical lattice clock

Introduction to cold atoms and Bose-Einstein condensation (II)

Observing Single Atoms

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Laser Cooling and Trapping of Atoms

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

High stability laser source for cold atoms applications

Bose-Einstein condensates & tests of quantum mechanics

A novel 2-D + magneto-optical trap configuration for cold atoms

Ultracold Fermi Gases with unbalanced spin populations

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Microfibres for Quantum Optics. Dr Síle Nic Chormaic Quantum Optics Group

NanoKelvin Quantum Engineering

Study of Collision Cross Section of Ultra-Cold Rubidium using a Magneto-Optic and pure Magnetic trap

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Standing Sound Waves in a Bose-Einstein Condensate

Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975

BOSE-EINSTEIN CONDENSATION AND MACROSCOPIC INTERFERENCE WITH ATOMIC TUNNEL ARRAYS

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

A Chromium BEC in strong RF fields

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

arxiv:cond-mat/ v2 5 Apr 1999

Experimental Advances toward a Compact Dual-Species Laser Cooling Apparatus

ATOMIC AND LASER SPECTROSCOPY

Saturation Absorption Spectroscopy of Rubidium Atom

Magneto-Optical Trap for Sodium Atoms from a Vapor Cell and Observation of Spatial Modes

Motion and motional qubit

Studies on cold atoms trapped in a Quasi- Electrostatic optical dipole trap

Laser cooling of 173 Yb for isotope separation and precision hyperfine spectroscopy

(Noise) correlations in optical lattices

Observation of Feshbach resonances in ultracold

Atomic Physics (Phys 551) Final Exam Solutions

In Situ Imaging of Cold Atomic Gases

Many-Body Physics with Quantum Gases

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

Lecture 10. Lidar Effective Cross-Section vs. Convolution

A Mixture of Bose and Fermi Superfluids. C. Salomon

Experiments with an Ultracold Three-Component Fermi Gas

A Study of Matter-Wave Diffraction in Bose- Einstein Condensates for Atom Interferometry Applications

Ytterbium quantum gases in Florence

Lecture 1. Physics of light forces and laser cooling

Cold fermions, Feshbach resonance, and molecular condensates (II)

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Elana Urbach. Abstract. This thesis presents progress on a path to Rubidium-85 Feshbach molecules that

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

Optical manipulation of atomic motion for a compact gravitational sensor with a Bose-Einstein condensate interferometer

arxiv: v1 [physics.atom-ph] 23 Jun 2017

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

Chapter 7: Quantum Statistics

Quantum Computation with Neutral Atoms Lectures 14-15

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Abstract Enhanced Loading of a Lithium 7 Magneto Optical Trap using Transverse Cooling and Frequency Spread Light Fabio Mibielli Peixoto 2002

Development and Characterization of a Magneto-Optical Trap for Rubidium John M. Robinson, Yu Liu, David P. Shelton

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Lecture 4: Superfluidity

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

COPYRIGHTED MATERIAL. Index

arxiv:physics/ v2 27 Mar 2006

Chapter 7: Quantum Statistics

Development of the Zeeman Slower for the Ultra-cold Atomic Interference Experiment

High precision measurement of the D-line tune-out wavelength in 87 Rb using a Bose-Einstein condensate interferometer

Investigating the Dynamics of a Bose Einstein Condensate on an Atom Chip

A study of the BEC-BCS crossover region with Lithium 6

Sub-Doppler cooling of 40K in three-dimensional gray optical molasses

Measurements of temperature scaling laws in an optically dense magneto-optical trap

1 Introduction nm Diode Laser System Optical Layout Frequency Locking Scheme... 24

arxiv:quant-ph/ v1 16 Mar 2007

Optical Detection of Ultracold Neutral Calcium Plasmas

Photoassociation Experiments on Ultracold and Quantum Gases in Optical Lattices

DIPOLE FORCE TRAP FOR TRANSPORTING NEUTRAL ATOMS

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

PHYS598 AQG Introduction to the course

22. Lasers. Stimulated Emission: Gain. Population Inversion. Rate equation analysis. Two-level, three-level, and four-level systems

Chapter 13. Phys 322 Lecture 34. Modern optics

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Evidence for Efimov Quantum states

Transcription:

Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1

Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic trap or optical dipole trap Temperature: nk mk Atom number: up to 10 8 Density: up to 10 14 cm -3 (air 10 19 cm -3 )

LevT lab, Innsbruck 3

Lecture 1: Overview of lectures Laser cooling of neutral atoms Trapping of neutral atoms Lecture : Evaporative cooling Bose-Einstein condensation (BEC) Lecture 3: (Ultra)cold molecules Laser cooling of molecules + labtour 4

http://arxiv.org/abs/11.4108 5

Lecture 1 Laser cooling of neutral atoms Trapping of neutral atoms 6

Atomic level structure Group I, alkali-metal atoms ground state: (closed shells)+ns first excited state: (closed shells)+np n P 3/ S=1/ L=1 J=1/, 3/ I F= I-3/,..., I+3/ F=I-1/, I+1/ n P 1/ fine-splitting hyperfine-splitting D1 D n S 1/ S=1/ L=0 J=1/ I F=I-1/, I+1/ n S+1 L J 7

87 Rb Zeeman Paschen-Bach D Zeeman effect: E g F m F m B B m B h 1.4 MHz/G fine-structure hyperfine-structure 8

Light-atom interaction Frequency, wavelength, linewidth and lifetime e E g 1 c polarization m -1 0 1 - + Saturation intensity Optical cross section I sat hc 3 3 3 di dz ni Beer s law 9

Laser cooling and trapping Nobelprize 1997 e e g Doppler effect g Zeeman effect B Chu Cohen-Tannoudji Phillips atomic beam source Zeeman slower Phillips et al, PRL 198 magneto-optical trap (MOT) Raab et al, PRL 1987 10

Radiation pressure atomic beam source 11

Radiation pressure atomic beam source (scattering rate) momentum) (photon scatt F 3 sat 3 hc I scatt scatt k kr F max max M k M F a 0 1 4 1 sat sat scatt I I I I R 1

Zeeman slower atomic beam source e v0 v az B mbb( z) Zeeman slower 0 k z 1/ v 1 z B B 0 L 0 bias g Zeeman effect m B v z B 0 L 0 v a v 1 0 hv0 m B 0 max z L B B bias 0 0 13 1/

Zeeman slower He* lab, Amsterdam 14

Optical molasses e g Doppler effect F molasses k F scatt Fscatt scatt kv F kv kv -v 0 4k I I sat scatt 1 0 F friction force-> molasses 0 0 red-detuned 15

Doppler cooling limit randow walk F F abs F abs spont F spont 1 k B T 4 k B T D F Example: Na 10 MHz 40 mk T D Doppler temperature 16

Magneto-optical trap 17

Magneto-optical trap F MOT F scatt ω kv ω βz F kv ω βz Fscatt kv 0 F scatt 0 z scatt v z k friction force-> molasses 0 mb db dz restoring force -> trap 18

Loading schemes background gas vapor cell (Monroe et al PRL 1990) very simple high background pressure (limited lifetime and atom number) slow beam Zeeman slower D-MOT another MOT Zeeman slower MOT 19

Fluoresence imaging NaLi lab, Heidelberg R scatt N I sat 1 I Isat 4 I 3D-MOT loading from D-MOT dn dt L N 0

Absorption imaging di dz ni Beer s law 3 1 I0 n( x, y) log I( x, Atom Cloud y) n( x, Camera I( x, y) I0 exp n( x, y) y) n( x, y, z) dz I(x,y) I 0 n(x,y) light with atoms light without atoms 1

Temperature n(x,y) Absorption imaging for variable expansion time kbt ( t) 0 t m time-of-flight

MOT s MOT NaLi lab, Heidelberg first: sodium, Na (1987) latest: holmium, Ho (014) 3

Laser cooling of alkali-metal elements example: rubidium ( 87 Rb) cycling transistion F= -> F =3 need repumper F=1 -> F = 4

Locking the laser on atomic transition Rb vapour cell / /4 Wedge photodetector Saturated absorption spectroscopy 87 Rb 85 Rb 5

Lasers laser cooling Near-resonant laser light, wavelength atom specific Dye laser (visible, tunable) Ti:Sapphire (NIR, tunable) Diode laser (visible-nir) Far off-resonant laser light (IR, NIR, FIR) Nd:YAG (1064nm) Ytterbium fiber laser (1064nm) Erbium Fiber Lasers (1550nm) CO laser (10.6mm) optical dipole trap 6

Light frequency and power control: AOM Acousto-Optical Modulator RF Bragg diffraction v f v i nv RF tunable frequency tunable output power fast switch on/off (<ms) 7

Trapping of neutral atoms Limitation of laser cooling temperature (sub)-doppler (sub)-recoil density light-assisted collisions reabsorption NaLi lab, Heidelberg Magnetic trap and/or optical dipole trap loaded from MOT (+cmot+optical molasses+optical pumping) evaporative cooling 8

Vacuum requirements Collisions with hot background atoms and molecules lead to trap loss loss 1 i ni v i N( t) N0 t exp cross section velocity density v n 8k B T πm P k T B ~ 10-14 cm, very crude guess (R 1 +R ) H @300K: v=1.8*10 3 m/s P 10 9 n 510 We need Ultra-High Vacuum (UHV) conditions! 7 cm -3 mbar for 10 s 1 mbar = 100 Pa = 0.75 Torr 9

Magnetic trapping U mag ( r) μ B( r) U mag gfm B M F B db dx x db y dy 1 db dz z B x y 4z Quadrupole magnetic trap 30

Quadrupole magnetic trap QMT (asymmetry due to gravity) Only low-field seeking states are trappable! 31

spin-polarizing Optical pumping F = + F= F=1 m F - -1 0 1 dark state 3

QMT limitation: Majorana loss nonadiabatic spin flips to untrapped states at the magnetic field zero at the center of the QMT loss: heating: N( t) N 0 e T( t) Mt T 0 M M t Solutions: harmonic potential with magnetic field offset -> Ioffe-Pritchard type magnetic trap plugged QMT (with blue detuned laserbeam) hybrid QMT + optical dipole trap m m k B T M 8 m 9 m kb 33

Optical dipole trap U dip ( r) d E( r) Re( ) c 0 I( r) scatt ( r) Im( ) c 0 I( r) Chu et al, PRL 1986 34

Optical dipole trap: -level system 0 D<0 red-detuned D>0 blue-detuned 35

Optical dipole trap: Rb 0, 0,1 D-line 780nm; D1-line 795nm 5W 50mm Typical wavelengths ODT Rb: 1064 nm, 1550 nm 36

Optical dipole trap: exp. realization r z waist Rayleigh length w 0 f w i U 0 P w 0 Rb 1557nm 5W 50mm Crossed dipole trap 37

Optical dipole trap Advantages All Zeeman states (lowest spin-state) Mixture of Zeeman states (spinor BEC) Add homogeneous magnetic field (Feshbach resonances) Disadvantages Shallow (<1 mk) Small (<1 mm) MOT -> Magnetic trap -> Optical dipole trap 38

Plugged QMT Optical-plug beam prevent atoms from the center of the QMT Blue-detuned (shorter wavelength than optical transition) 39

Hybrid QMT+optical dipole trap Add single optical dipole beam to QMT, misaligned from QMT center 40

Levitated optical dipole trap U grav =mgz 0.W 0.5W 1W Rb 1557nm 50mm add quadrupole and bias field to compensate gravity magnetic field gradient needed: mg db m dz Example 87 Rb (F=1, m F =1): m=m B / db dz m Rb g m B 30.5 G/cm 41