DIFFERENTIAL GEOMETRY AND THE QUATERNIONS. Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013

Similar documents
HYPERKÄHLER MANIFOLDS

Torus actions and Ricci-flat metrics

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

Holonomy groups. Thomas Leistner. Mathematics Colloquium School of Mathematics and Physics The University of Queensland. October 31, 2011 May 28, 2012

Stable bundles on CP 3 and special holonomies

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15

Marsden-Weinstein Reductions for Kähler, Hyperkähler and Quaternionic Kähler Manifolds

Linear connections on Lie groups

η = (e 1 (e 2 φ)) # = e 3

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

Infinitesimal Einstein Deformations. Kähler Manifolds

The Strominger Yau Zaslow conjecture

Moment Maps and Toric Special Holonomy

H-projective structures and their applications

Twistor constructions of quaternionic manifolds and asymptotically hyperbolic Einstein Weyl spaces. Aleksandra Borówka. University of Bath

Two simple ideas from calculus applied to Riemannian geometry

Higgs Bundles and Character Varieties

Algebraic geometry over quaternions

Hyperkähler geometry lecture 3

Geometric Structures in Mathematical Physics Non-existence of almost complex structures on quaternion-kähler manifolds of positive type

Constructing compact 8-manifolds with holonomy Spin(7)

The Calabi Conjecture

How to recognise a conformally Einstein metric?

arxiv:hep-th/ v2 14 Oct 1997

The exceptional holonomy groups and calibrated geometry

HARMONIC MAPS INTO GRASSMANNIANS AND A GENERALIZATION OF DO CARMO-WALLACH THEOREM

Elementary Deformations HK/QK. Oscar MACIA. Introduction [0] Physics [8] Twist [20] Example [42]

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011

Some new torsional local models for heterotic strings

Manifolds with holonomy. Sp(n)Sp(1) SC in SHGAP Simon Salamon Stony Brook, 9 Sep 2016

Minimal surfaces in quaternionic symmetric spaces

Projective parabolic geometries

Self-dual conformal gravity

SYMPLECTIC GEOMETRY: LECTURE 5

The Higgs bundle moduli space

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

B-FIELDS, GERBES AND GENERALIZED GEOMETRY

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY

A NOTE ON RIGIDITY OF 3-SASAKIAN MANIFOLDS

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

Compact Riemannian manifolds with exceptional holonomy

Citation Osaka Journal of Mathematics. 49(3)

Multi-moment maps. CP 3 Journal Club. Thomas Bruun Madsen. 20th November 2009

arxiv:alg-geom/ v1 29 Jul 1993

Metrics and Holonomy

ELEMENTARY DEFORMATIONS AND THE HYPERKAEHLER / QUATERNIONIC KAEHLER CORRESPONDENCE

Conification of Kähler and hyper-kähler manifolds and supergr

arxiv:math/ v3 [math.dg] 5 Mar 2003

CALIBRATED GEOMETRY JOHANNES NORDSTRÖM

Modern Geometric Structures and Fields

Simon Salamon. Turin, 24 April 2004

Manifolds with exceptional holonomy

EXAMPLES OF SELF-DUAL, EINSTEIN METRICS OF (2, 2)-SIGNATURE

Morse theory and stable pairs

Nigel Hitchin (Oxford) Poisson 2012 Utrecht. August 2nd 2012

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY

Quaternionic Complexes

REAL INSTANTONS, DIRAC OPERATORS AND QUATERNIONIC CLASSIFYING SPACES PAUL NORBURY AND MARC SANDERS Abstract. Let M(k; SO(n)) be the moduli space of ba

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

Parallel and Killing Spinors on Spin c Manifolds. 1 Introduction. Andrei Moroianu 1

LAGRANGIAN HOMOLOGY CLASSES WITHOUT REGULAR MINIMIZERS

Topological Solitons from Geometry

Published as: J. Geom. Phys. 10 (1993)

RICCI SOLITONS ON COMPACT KAHLER SURFACES. Thomas Ivey

arxiv: v2 [math.dg] 18 Feb 2019

Twistor spaces of hyperkähler manifolds with S 1 -actions

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

SPECIAL RIEMANNIAN GEOMETRIES MODELED ON THE DISTINGUISHED SYMMETRIC SPACES

How to recognize a conformally Kähler metric

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

TOTALLY REAL SURFACES IN THE COMPLEX 2-SPACE

arxiv:math-ph/ v1 1 Dec 2006

Left-invariant Einstein metrics

Quantising noncompact Spin c -manifolds

Exotic nearly Kähler structures on S 6 and S 3 S 3

Spin(10,1)-metrics with a parallel null spinor and maximal holonomy

1: Lie groups Matix groups, Lie algebras

K-stability and Kähler metrics, I

1. Geometry of the unit tangent bundle

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

Solvable Lie groups and the shear construction

CALIBRATED FIBRATIONS ON NONCOMPACT MANIFOLDS VIA GROUP ACTIONS

MODIFYING HYPERKÄHLER MANIFOLDS WITH CIRCLE SYMMETRY

Geometria Simplettica e metriche Hermitiane speciali

UNIVERSITY OF DUBLIN

Lectures on Lie groups and geometry

Mirror Symmetry: Introduction to the B Model

OBSTRUCTION TO POSITIVE CURVATURE ON HOMOGENEOUS BUNDLES

Poisson modules and generalized geometry

An Invitation to Geometric Quantization

Compact 8-manifolds with holonomy Spin(7)

arxiv: v3 [hep-th] 22 Sep 2014

A Joint Adventure in Sasakian and Kähler Geometry

Math. Res. Lett. 13 (2006), no. 1, c International Press 2006 ENERGY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ.

Ricci-flat metrics on the complexification of a compact rank one symmetric space

An introduction to General Relativity and the positive mass theorem

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula

From holonomy reductions of Cartan geometries to geometric compactifications

Transcription:

DIFFERENTIAL GEOMETRY AND THE QUATERNIONS Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013

16th October 1843

ON RIEMANNIAN MANIFOLDS OF FOUR DIMENSIONS 1 SHIING-SHEN CHERN Introduction. It is well known that in three-dimensional elliptic or spherical geometry the so-called Clifford's parallelism or parataxy has many interesting properties. A group-theoretic reason for the most Let #o, #1» ^2, #3 be the coordinates of a point with respect to a frame Co, ei, e2, e 3, as defined by (2). To these coordinates we associate a unit quaternion (4) X = XQ + xii + X2J + xzk, N(X) = 1, where N(X) denotes the norm of X. Let (4a) X* = x* + x*i+ x*j + x?k. S-S.Chern, On Riemannian manifolds of four dimensions, Bull. Amer. Math. Soc. 51 (1945) 964 971.

Quaternions came from Hamilton after his best work had been done, and though beautifully ingenious, they have been an unmixed evil to those who have touched them in any way Lord Kelvin 1890

GEOMETRY OVER THE QUATERNIONS

q H quaternions q = x 0 + ix 1 + jx 2 + kx 3 algebraic variety? f(q 1,..., q n ) = 0 q 2 + 1 = 0: 2-sphere q = ix 1 + jx 2 + kx 3, x 2 1 + x2 2 + x2 3 = 1

submanifold M H n T x M H n T x M quaternionic for all x M M = H m H n

INTRINSIC DIFFERENTIAL GEOMETRY

quaternionic structure on the tangent bundle T affine connection X Y zero torsion X Y Y X = [X, Y ]

H n n-dimensional quaternionic vector space left action by GL(n, H) commutes with right action of H GL(n, H) H

metric maximal compact subgroup Sp(n) Sp(1) GL(n, H) H Levi-Civita connection : preserving metric unique torsion-free connection Quaternionic Kähler preserves quaternionic structure

GL(n, H) preserves action of H on tangent bundle T I,J,K End(T ) such that I 2 = J 2 = K 2 = IJK = 1 metric Sp(n) GL(n, H) Levi-Civita connection : preserving metric unique torsion-free connection Hyperkähler preserves I,J,K

SL(n, H) U(1) preserves action of C on tangent bundle T if a torsion-free connection preserves this structure, it is unique complex quaternionic complex manifold volume form U(1) connection on K

SL(n, H) U(1) SL(1, H) U(1) = Sp(1) U(1) = SU(2) U(1) = U(2) for n = 1 complex quaternionic = Kähler complex surface with zero scalar curvature n > 1 complex quaternionic is non-metric

Lecture 1 Quaternionic manifolds Lecture 2 Hyperkähler moduli spaces Lecture 3 Twistors and holomorphic geometry Lecture 4 Correspondences and circle actions

THE HYPERKÄHLER QUOTIENT

hyperkähler manifold M 4k complex structures I, J, K + metric g Kähler forms ω 1, ω 2, ω 3

hyperkähler manifold M 4k complex structures I, J, K + metric g Kähler forms ω 1, ω 2, ω 3 ω i : T T, K = ω 1 1 ω 2 etc.

Lie group G acting on M, fixing ω 1, ω 2, ω 3 a g vector field X a d(i Xa ω i ) + i Xa dω i = L Xa ω i = 0

Lie group G acting on M, fixing ω 1, ω 2, ω 3 a g vector field X a d(i Xa ω i ) + i Xa dω i = L Xa ω i = 0 moment map i Xa ω i = dµ a i

µ : M g R 3 If G acts properly and freely on µ 1 (0) then...... the quotient metric on µ 1 (0)/G is hyperkähler...... of dimension dim M 4 dim G

EXAMPLE M = H n = C n + jc n flat hyperkähler manifold ω 1 = i 2 (dz k d z k + dw k d w k ) ω 2 + iω 3 = dz k dw k G = U(1) action u (z, w) = (uz, u 1 w)

EXAMPLE M = H n = C n + jc n flat hyperkähler manifold ω 1 = i 2 (dz k d z k + dw k d w k ) ω 2 + iω 3 = dz k dw k G = U(1) action u (z, w) = (uz, u 1 w) µ(z, w) = (z k z k w k w k, z k w k ) + const. R C = R 3 choice

µ(z, w) = (z k z k w k w k, z k w k ) + (1, 0) R C = R 3 µ 1 (0) : z 2 w 2 + 1 = 0 and z k w k = 0

µ(z, w) = (z k z k w k w k, z k w k ) + (1, 0) R C = R 3 µ 1 (0) : z 2 w 2 + 1 = 0 and z k w k = 0 w = 0 projection µ 1 (0) CP n 1 µ 1 (0)/U(1) = T CP n 1 Calabi metric, Eguchi-Hanson (n=2)

HERMITIAN SYMMETRIC SPACES O. Biquard, P. Gauduchon, Hyperkähler metrics on cotangent bundles of Hermitian symmetric spaces, in Lecture Notes in Pure and Appl. Math 184, 287 298, Dekker (1996) p : T (G/H) G/H ω 1 = p ω + dd c h h =(f(ir(ix,x))x, X), R curvature tensor, X T 1+u 1 log 1+ 1+u f(u) = 1 u 2

EXAMPLE M = H + H and G = R action t (q 1, q 2 ) = (e it q 1, q 2 + t)

EXAMPLE M = H + H and G = R action t (q 1, q 2 ) = (e it q 1, q 2 + t) µ 1 (0) : z 1 2 w 1 2 = im z 2 and z 1 w 1 = w 2 µ 1 (0)/R = C 2, coordinates (z 1, w 1 ) Taub-NUT metric

V harmonic function on R 3 dv = dα g = V (dx 2 1 + dx2 2 + dx2 3 )+V 1 (dθ + α) 2. ω 1 = Vdx 2 dx 3 + dx 1 (dθ + α) V = 1 2r + c

NJH, A. Karlhede, U. Lindström & M. Roček, Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535 589. K.Galicki & H.B Lawson Jr. Quaternionic reduction and quaternionic orbifolds, Math. Ann. 282 (1988) 121.

QUATERNIONIC KÄHLER AND HYPERKÄHLER

Sp(n) Sp(1) GL(n, H) H Levi-Civita connection : preserving metric unique torsion-free connection Quaternionic Kähler preserves quaternionic structure

Sp(n) Sp(1) GL(n, H) H Levi-Civita connection : preserving metric unique torsion-free connection Quaternionic Kähler preserves quaternionic structure principal Sp(1) bundle with connection

T is a module over a bundle of quaternions (e.g. HP n ) equivalently a rank 3 bundle of 2-forms ω 1, ω 2, ω 3

T is a module over a bundle of quaternions (e.g. HP n ) equivalently a rank 3 bundle of 2-forms ω 1, ω 2, ω 3 ω 1 = θ 2 ω 3 θ 3 ω 2 curvature K 23 = dθ 1 θ 2 θ 3 etc. in fact K 23 = cω 1, c constant scalar curvature

P = SO(3) frame bundle θ i well-defined 1-forms on P dim P R + = 4n + 4

P = SO(3) frame bundle θ i well-defined 1-forms on P dim P R + = 4n + 4 define ϕ i = d(tθ i ) (t = R + coordinate) three closed 2-forms ϕ 1, ϕ 2, ϕ 3

T (P R + )=H V on H, θ i = 0 and dt = 0, ϕ i = tcω i on V, ϕ 1 = dt θ 1 + t 2 θ 2 θ 3 etc. algebraic relations for hyperkähler if c>0 Lorentzian version Sp(1,n)if c<0

EXAMPLE M = HP n quaternionic projective space P = S 4n+3 H n+1 P R + = H n+1 \{0}

P R + = Swann bundle or hyperkähler cone G preserves quaternionic Kähler structure induced action on P preserves ϕ 1, ϕ 2, ϕ 3 Quaternionic Kähler quotient hyperkähler quotient on Swann bundle

P R + = Swann bundle or hyperkähler cone G preserves quaternionic Kähler structure induced action on P preserves ϕ 1, ϕ 2, ϕ 3 Quaternionic Kähler quotient hyperkähler quotient on Swann bundle... at zero value of the moment map

EXAMPLE M = Sp(2, 1)/Sp(2) Sp(1) and G = R R = SO(1, 1) Sp(1, 1) Sp(2, 1) Quotient = deformation of hyperbolic metric on B 4 self-dual Einstein

Math. Ann. 290, 323-340 (1991) Anm 9 Springer-Verlag 1991 The hypercomplex quotient and the quaternionic quotient Dominic Joyce Merton College, Oxford, OX1 4JD, UK Received November 30, 1990 1 Introduction When a symplectic manifold M is acted on by a compact Lie group of isometries F, then a new symplectic manifold of dimension dimm-2dimf can be defined, called the Marsden-Weinstein reduction of M by F [MW]. Kfihler manifolds are

QUATERNIONIC KÄHLER AND COMPLEX QUATERNIONIC

M quaternionic Kähler locally defined 2-forms ω 1, ω 2, ω 3 span a subbundle E Λ 2 T invariant closed 4-form Ω = ω 2 1 + ω2 2 + ω2 3 stabilizer Sp(n) Sp(1)

action of G preserving Ω (and therefore the metric) i Xa Ω = dµ a 2-form µ a moment form µ Λ 2 T g

vector field X 1-form X (dx ) + = component in E Λ 2 T = µ up to a constant multiple

locally µ = µ 1 ω 1 + µ 2 ω 2 + µ 3 ω 3 if µ = 0 distinguished almost complex structure 1 µ (µ 1I + µ 2 J + µ 3 K)

locally µ = µ 1 ω 1 + µ 2 ω 2 + µ 3 ω 3 if µ = 0 distinguished almost complex structure 1 µ (µ 1I + µ 2 J + µ 3 K) PROP: This is integrable. F.Battaglia, Circle actions and Morse theory on quaternion- Kähler manifolds, J.Lond.Math.Soc 59 (1999) 345 358.

locally µ = µ 1 ω 1 + µ 2 ω 2 + µ 3 ω 3 if µ = 0 distinguished almost complex structure 1 µ (µ 1I + µ 2 J + µ 3 K) PROP: This is integrable. F.Battaglia, Circle actions and Morse theory on quaternion- Kähler manifolds, J.Lond.Math.Soc 59 (1999) 345 358. PROP: M carries a canonical complex quaternionic structure.

THE CONNECTION Levi-Civita connection holonomy Sp(k) Sp(1) torsion-free, holonomy in GL(k, H) H : 1-form α Z Y = Z Y + α(z)y + α(y )Z α(iy )IZ α(iz)iy α(jy )JZ α(jz)jy α(ky )KZ α(kz)ky

I = 0? torsion-free, holonomy in GL(k, H) H : choose local gauge µ = µω 1 I = θ 2 K θ 3 J

µ = i i X ω i ω i dµ = i X ω 1 µθ 2 = i X ω 3 µθ 3 = i X ω 2 I = θ 2 K θ 3 J I =0 α = Jθ 2 /2=Kθ 3 /2 α = d log µ/2.

Riemannian volume form v g v g = (2k + 2)(d log µ)v g µ (2k+2) v g invariant volume form holonomy SL(k, H) U(1)

DIMENSION 4 SL(1, H) U(1) = U(2) = Levi-Civita connection of µ 2 g self-dual Einstein scalar-flat Kähler K.P.Tod, The SU( )-Toda field equation and special fourdimensional metrics, in Geometry and physics (Aarhus, 1995 Dekker, 1997, 317 312 A.Derdzinski, Self-dual Kähler manifolds and Einstein man folds of dimension four, Comp. Math. 49 (1983) 405-433

EXAMPLE HP 1 = S 4 g S 4 = 1 (1 + ρ 2 + σ 2 ) 2(dρ2 + ρ 2 dϕ 2 + dσ 2 + σ 2 dθ 2 ) X = / θ X = σ 2 dθ/(1 + ρ 2 + σ 2 ) 2 = u 2 dθ u = σ/(1 + ρ 2 + σ 2 ),v =(ρ 2 + σ 2 1)/ρ g S 4 = 1 1 4u 2du2 + u 2 dθ 2 + 1 4u2 (v 2 + 4) 2dv2 + 1 4u2 v 2 +4 dϕ2

µ =(1 4u 2 ) 1/2 g = 1 1 (1 4u 2 ) 2du2 + (1 4u 2 ) u2 dθ 2 1 + (v 2 + 4) 2dv2 + 1 v 2 +4 dϕ2 H 2 S 2 scalar curvature 4+4=0 (u = (tanh 2x)/2 and v =2tany)... on S 4 minus the circle ρ =0, σ =1

COMPACT QUATERNION KÄHLER MANIFOLDS Wolf spaces G/K symmetric Sp(n + 1)/Sp(n) Sp(1), SU(n + 2)/S(U(n) U(2)), SO(n + 4)/SO(n) SO(4) E 6 /SU(6) SU(2), E 7 /Spin(12) Sp(1), E 8 /E 7 Sp(1) F 4 /Sp(3) Sp(1), G 2 /SO(4)

NEXT LECTURE... Hyperkähler manifolds Hyperholomorphic bundles Moduli space examples