COURSE OUTLINE - ADVETI

Similar documents
Year 11 IGCSE Physics Revision Checklist

The City School. O-Level Syllabus Break Up

CIE Physics IGCSE. Topic 1: General Physics

YEAR 10- Physics Term 1 plan

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions

Block 1: General Physics. Chapter 1: Making Measurements

Scheme of work Cambridge IGCSE Physics (0625)

UNIT 2: motion, force and energy.

UNIT 2: motion, force and energy.

Personalised Learning Checklists AQA Physics Paper 2

YEAR 10 PHYSICS IGCSE Forces

COURSE OUTLINE General Physics I

St Olave s Physics Department. Year 11 Mock Revision Checklist

IGCSE Co-ordinated Sciences 0654 Unit 18: Forces and motion

Year 10 End of Year Examination Revision Checklist

Knowledge Organiser Year 12 Semester 1: Measurements and Movement

Personalised Learning Checklists AQA Physics Paper 2

Physics GCSE (9-1) Energy

AS Unit G481: Mechanics

Cherokee High School. Class Syllabus

AQA Forces Review Can you? Scalar and vector quantities Contact and non-contact forces Resolving forces acting parallel to one another

AP Physics 1. Course Overview

igcse Physics Specification Questions 2. State the equation linking average speed, distance moved and time.

Learner Guide. Cambridge IGCSE Physics. Cambridge Secondary 2

AQA Physics Checklist

2. be aware of the thermal properties of materials and their practical importance in everyday life;

TOPIC 1 GENERAL PHYSICS

Cambridge IGCSE Science. Syllabus 0654 for 2016 Exam

GCSE 4473/02 PHYSICS 2 HIGHER TIER ADDITIONAL SCIENCE/PHYSICS. P.M. MONDAY, 19 May hour. Candidate Number. Centre Number. Surname.

GCSE to A-level progression

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile:

HSC Physics Module 8.4. Moving About

Course Title: Physics I : MECHANICS, THERMODYNAMICS, AND ATOMIC PHYSICS Head of Department:

PHYSICS 1 UNIT 1 - WAVES & LIGHT. September-October - 4 weeks May-June - 2 weeks. Resources & ICT. Students to Know. Cross curricular links.

Amarillo ISD Science Curriculum

EASTERN ARIZONA COLLEGE General Physics I

4.2 Forces: identifying, measuring and representing motion, turning effects, pressure

HASTINGS HIGH SCHOOL

OCR Physics Specification A - H156/H556

Correlation to New Jersey Core Curriculum Content Standards for Science CPO Science Physical Science (Middle School)

Topic Student Checklist R A G

DIVIDED SYLLABUS ( ) - CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL

Physical Science Capstone Instructional Segment This is a two-week summative designed to give students an opportunity to review and re-examine the

MATTER AND ITS INTERACTIONS

MrN Physics Private Tuition in GCSE and A level Physics AQA GCSE Combined Science: Trilogy Physics (2016 onwards)

1 st Six Weeks 25 Days Focal Points Unit Unit 1 Introduction and Safety

Year 10 Physics Sets 1, 2 and 3 (Edexcel Separate Science and Double Award)

Physics Subject Specialism Training 2016/17

IGCSE Double Award Extended Coordinated Science

Student Achievement. Physics 12

While entry is at the discretion of the centre, candidates would normally be expected to have attained one of the following, or equivalent:

New Mexico Public Education Department

Summary of changes. 4.1 Forces Forces and their interactions. Previous GCSE Physics. Section. What s changed. Unit 1 Unit 2 Unit 3

Preparing for your mock exams - AQA P1

P.M. WEDNESDAY, 25 May hour

Specimen Paper. Physics. AQA Level 1/2 Certificate in Physics Specimen Paper. Paper 2 TOTAL. Time allowed 1 hour 30 minutes

Personalised Learning Checklists AQA Physics Paper 2

CURRICULUM COURSE OUTLINE

Upthrust and Archimedes Principle

Alberta Standards Alignment Guide

AP Physics C: Mechanics: Syllabus 2

Effective January 2008 All indicators in Standard / 11

1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement

Coimisiún na Scrúduithe Stáit State Examinations Commission

KS3 Science: Physics Contents

Learner Guide. Cambridge IGCSE Physics. Cambridge Secondary 2

HIGHER, FASTER, STRONGER

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Unit assessments are composed of multiple choice and free response questions from AP exams.

APPLIED MATHEMATICS IM 02

Amarillo ISD - Physics - Science Standards

Section (Stable and unstable nuclei)- the role of the neutrino now has greater emphasis.

London Examinations IGCSE

D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for

TEKS Physics, Beginning with School Year Correlation to CPO Science Link

YEAR 11- Physics Term 1 plan

Giancoli Chapter 0: What is Science? What is Physics? AP Ref. Pgs. N/A N/A 1. Giancoli Chapter 1: Introduction. AP Ref. Pgs.

Combined Science Physics Academic Overview

Domain IV Science. Science Competencies 4/14/2016. EC-6 Core Subjects: Science

Problem Solver Skill 5. Defines multiple or complex problems and brainstorms a variety of solutions

Physics Teaching & Learning Framework (Block) Unit 4. Sounds, Waves and Light SP4

MASTER SYLLABUS

BRAZOSPORT COLLEGE LAKE JACKSON, TEXAS SYLLABUS PHYS MECHANICS AND HEAT

GCSE PHYSICS REVISION LIST

Edexcel Physics Checklist

For examination in June and November 2016, 2017 and Also available for examination in March 2016, 2017 and 2018 in India only.

Accelerated Physical Science-Integrated Year-at-a-Glance ARKANSAS STATE SCIENCE STANDARDS

Physics Overview. Assessments Assessments Adopted from course materials Teacher-created assessments Standard Physical Science

UNIQUE SCIENCE ACADEMY General Certificate of Education Ordinary Level

Dublin City Schools Science Graded Course of Study Physical Science

Suggested Solutions for 2011 J1 H2 Physics Paper Which of the following is a unit of pressure?

Subject: Science Scheme of Work: 9/10/11 Physics. Term: Autumn/Spring/Summer. Overview / Context

Alabama Department of Postsecondary Education

Field 046: Science Physical Science Assessment Blueprint

FORCE AND MOTION SEPUP UNIT OVERVIEW

Department of Physics. ( Al Ansar International School, Sharjah) ( ) Project Work Term 1. IGCSE Physics Grade 9. Students Name: Grade / Section:

Miami-Dade Community College PHY 2053 College Physics I

Transcription:

COURSE OUTLINE - ADVETI Course Title Course Code Grade 10 Basic IGCSE Physics PHYSI1001-03 Duration (periods) 144 Version Number V3 Date: December 2012 Revision Date Industry Sector Linked Standards Course Purpose Context of delivery and assessment 1 yr. Short review date: May/2013 3 yrs. In depth review date: May/2015 Engineering, Aviation and Business IGCSE This course provides the learner with the unpinning Physics and applied science skills and knowledge needed for Engineering, Aviation and Business courses. This course is relevant to general physics for Engineering, Business and Aviation. Not all assessment criteria need to be met in one assessment task or activity. Pre-Requisite/Co- Requisite Assessment Refer to ADVETI assessment policy Teacher/Learner Resources Physical resources The teacher and student should have access to current industry relevant publications including but not restricted to: Physics Notes Internet access Software packages Board works etc I-Pads It is essential that assessment is conducted in an environment which reflects industry practices with access to suitable resources and equipment specifically: A standard classroom environment; Library facilities; I-Pads Smart board/interactive whiteboard A data projector A laptop & calculators Course outline_grade 10_STSCIS801_v3 Page 1 of 9

Customisation required (Please specify) General Comments Access to Laboratory and workshops Hands-on materials: Calculators, rules, graph papers, simple card material for modelling, tins, rulers, graph paper, card, scissors, glue Measuring equipment: Scales, measuring tapes, thermometers, compasses and protractors Available in English only Alongside with the course students are to practice IGCSE past papers. The following skills must be assessed as part of this course: Essential Skills Students ability to use the suitable measuring instrument and in the proper way to carry measurements for mass, volume, length, period of time, temperature and density. The ability to explain the difference between mass and weight. Define and use the formulae of pressure and be able to explain the liquid pressure standards and the factors that affect pressure. Build abilities to observe motion and use the kinematic tools and graphs to determine motion type and calculate quantities like distance, speed, acceleration and time. Be able to differentiate between vectors and scalars. Define the main cause of motion and study forces regarding their action, effects, and units. Be able to explain the conditions of equilibrium of bodies and explain some natural movements taking into consideration the centre of mass of the object. Dealing with risks and danger through investigations on seat belt and breaking cars, thinking distance that effect the driver making a car accident, braking forces and drag forces for the aerodynamic shape of cars and parachutists. Define energy work and power and investigate how energy resources are valuable and what make us in challenge with making these resources green and renuable. Here students are facing through detailed knowledge of energy transformation and sources the challenge that are facing to make use of sources of energy other than the chemical and nuclear. Then, the course will shift to the study of thermal effects and provide students with skills essential to their daily lives from explaining the simple phenomena of nature regarding water state change to the engineering of bridges and taking into consideration the thermal effects on building them. Then students are exposed to learn skills on fluid motion which help them understand many motions of fluids and introduce to them the importance of fluid movement which is important to general lives and especially to those who will study in the aviation section. Students will learn the ways of building and using a thermometer to measure temperature in different situations. Course outline_grade 10_STSCIS801_v3 Page 2 of 9

The following knowledge must be assessed as part of this course: General Physics: Essential Knowledge Measurements and Units: Measure Length, volume, mass. Notion of Mass and weight. Pressure and density. Kinematics: Study the kinematics and be able to describe the motion draw motion graphs, use the graphs and equations to calculate the speed, acceleration distance and time. Forces: study the causes a force can do and determine the resultant of forces in action. Use the scaled diagrams. Study the effects of a force (Moment) and define the state of equilibrium to solve problems. Energy: Types of energy, work is where energy transforms from one type to another. Define power and carry calculations on energy work and power. Energy resources and types. Thermal Physics: molecular theory. States of matter. Evaporation, changes in pressure causes, thermal expansion and measuring temperature. Course outline_grade 10_STSCIS801_v3 Page 3 of 9

General Physics 1 2 Elements Length and time Mass and weight 3 Density 4 Pressure 1.1 1.2 1.3 1.4 Performance Requirements Use and describe the use of rules and measuring cylinders to calculate a length or a volume. Use and describe the use of clocks and devices for measuring an interval of time Use and describe the use of a mechanical method for the measurement of a small distance (including use of a micrometer screw gauge) Measure and describe how to measure a short interval of time (including the period of a pendulum) 2.1 Show familiarity with the idea of the mass of a body. 2.2 State that weight is a force. 2.3 2.4 2.5 3.1 3.2 3.3 4.1 4.2 4.3 Demonstrate understanding that weights (and hence masses) may be compared using a balance. Demonstrate an understanding that mass is a property that resists change in motion. Describe, and use the concept of, weight as the effect of a gravitational field on a mass. Describe an experiment to determine the density of a liquid and of a regularly shaped solid. Perform the necessary calculations for determining the densities of both. Describe the determination of the density of an irregularly shaped solid by the method of displacement, and make the necessary calculation. Relate (without calculation) pressure to force and area,with examples. Describe the simple mercury barometer and its use in measuring atmospheric pressure. Relate (without calculation) the pressure beneath a liquid surface to depth and to density, using appropriate examples. 4.4 Use and describe the use of a manometer. 4.5 Recall and use the equation p = F/A. 4.6 Recall and use the equation p = hρg. Course outline_grade 10_STSCIS801_v3 Page 4 of 9

General Physics 5.1 5.2 5.3 Define speed and calculate speed from total distance total time Distinguish between speed and velocity. Demonstrate some understanding that acceleration is related to changing speed. 5 Speed, velocity and acceleration 5.4 5.5 Recognise linear motion for which the acceleration is constant and calculate the acceleration. State that the acceleration of free fall for a body near to the Earth is constant. 5.6 Plot and interpret a speed/time graph or a distance/time graph. Recognise from the shape of a speed/time graph when a body is: 5.7 at rest moving with constant speed moving with changing speed 6 Forces Effects of forces 5.8 Calculate the area under a speed/time graph to work out the distance travelled for motion with constant acceleration. 6.1 State that a force may produce a change in size and shape of a body. 6.2 Describe the ways in which a force may change the motion of a body. 6.3 Find the resultant of two or more forces acting along the same line. 6.4 Plot extension/load graphs and describe iits experimental procedure. 6.5 State Hooke s Law and recall and use the expression F = k x. 6.6 Interpret extension/load graphs. 6.7 6.8 Recognise the significance of the term limit of proportionality for an extension/load graph. Recall and use the relation between force, mass and acceleration (including the direction). 6.9 Recognise motion for which the acceleration is not constant. 6.10 Describe qualitatively the motion of bodies falling in a uniform gravitational field with and without air resistance (including reference to terminal velocity). 6.11 Describe qualitatively motion in a curved path due to a perpendicular forc (F = mv 2 /r is not required). Course outline_grade 10_STSCIS801_v3 Page 5 of 9

General Physics General Physics 7.1 Describe the moment of a force as a measure of its turning effect and give everyday examples. 7 8 9 10 Turning effect Conditions for equilibrium Centre of mass Scalars and vectors 7.2 Describe qualitatively the balancing of a beam about a pivot. 7.3 7.4 8.1 9.1 9.2 Perform and describe an experiment (involving vertical forces) to show that there is no net moment on a body in equilibrium. Apply the idea of opposing moments to simple systems in equilibrium. State that, when there is no resultant force and no resultant turning effect, a system is in equilibrium. Perform and describe an experiment to determine the position of the centre of mass of a plane lamina. Describe qualitatively the effect of the position of the centre of mass on the stability of simple objects. 10.1 Demonstrate an understanding of the difference between scalars and vectors and give common examples. 10.2 Add vectors by graphical representation to determine a resultant. 10.3 Determine graphically the resultant of two vectors. 11 Energy 12 Energy resources 11.1 11.2 11.3 11.4 11.5 12.1 12.2 1.6a.1 Demonstrate an understanding that an object may have energy due to its motion or its position, and that energy may be transferred and stored. 1.6a.2 Give examples of energy in different forms, including kinetic, gravitational, chemical, strain, nuclear, internal, electrical, light and sound. 1.6a.3 Give examples of the conversion of energy from one form to another, and of its transfer from one place to another. 1.6a.4 Apply the principle of energy conservation to simple examples. 1.6a.5 Recall and use the expressions k.e. = ½ mv 2 and p.e. = mgh. 1.6b.1 Distinguish between renewable and non-renewable sources of energy. 1.6b.2 Describe how electricity or other useful forms of energy may be obtained: Course outline_grade 10_STSCIS801_v3 Page 6 of 9

Thermal Physics 13 Work 14 Power 12.3 from chemical energy stored in fuel from water, including the energy stored in waves, in tides, and in water behind hydroelectric dams from geothermal resources from nuclear fission from heat and light from the Sun (solar cells and panels) 1.6b.3 Give advantages and disadvantages of each method in terms of cost, reliability, scale and environmental impact. 12.4 1.6b.4 Show a qualitative understanding of efficiency. 12.5 1.6b.5 Show that energy is released by nuclear fusion in the Sun. 12.6 1.6b.6 Recall and use the equation: useful energy output; efficiency = energy input 100% 13.1 1.6c.1 Relate (without calculation) work done to the magnitude of a force and the distance moved. 13.2 1.6c.2 Describe energy changes in terms of work done. 13.3 1.6c.3 Recall and use W = Fd = E. 14.1 14.2 1.6d.1 Relate (without calculation) power to work done and time taken, using appropriate examples. 1.6d.2 Recall and use the equation P = E/t in simple systems. 15 16 States of matter Molecular model 15.1 16.1 16.2 16.3 2.1a.1 State the distinguishing properties of solids, liquids and gases. 2.1b.1 Describe qualitatively the molecular structure of solids, liquids and gases. 2.1b.2 Interpret the temperature of a gas in terms of the motion of its molecules. 2.1b.3 Describe qualitatively the pressure of a gas in terms of the motion of its molecules. 2.1b.4 Describe qualitatively the effect of a change of temperature 16.4 on the pressure of a gas at constant volume. 2.1b.5 Show an understanding of the random motion of particles 16.5 in a suspension as evidence for the kinetic molecular model of matter. 2.1b.6 Describe this motion (sometimes known as Brownian 16.6 motion) in terms of random molecular bombardment. 16.7 Course outline_grade 10_STSCIS801_v3 Page 7 of 9

Thermal Physics 17 Evaporation 18 19 Pressure changes Thermal expansion of solids, liquids and gases 16.8 17.1 2.1b.7 Relate the properties of solids, liquids and gases to the forces and distances between molecules and to the motion of the molecules. 2.1b.8 Show an appreciation that massive particles may be moved by light, fast- moving molecules. 2.1c.1 Describe evaporation in terms of the escape of moreenergetic molecules from the surface of a liquid. 17.2 2.1c.2 Relate evaporation to the consequent cooling. 17.3 18.1 18.2 19.1 19.2 19.3 19.4 2.1c.3 Demonstrate an understanding of how temperature, surface area and draught over a surface influence evaporation. 2.1d.1 Relate the change in volume of a gas to change in pressure applied to the gas at constant temperature. 2.1d.2 Recall and use the equation pv = constant at constant temperature. 2.2a.1 Describe qualitatively the thermal expansion of solids, liquids and gases. 2.2a.2 Identify and explain some of the everyday applications and consequences of thermal expansion. 2.2a.3 Describe qualitatively the effect of a change of temperature on the volume of a gas at constant pressure. 2.2a.4 Show an appreciation of the relative order of magnitude of the expansion of solids, liquids and gases. 20 Measurement of temperature 2.2b.1 Appreciate how a physical property that varies with 20.1 temperature may be used for the measurement of temperature,and state examples of such properties 20.2 2.2b.2 Recognise the need for and identify fixed points. 2.2b.3 Describe the structure and action of liquid-in-glass 20.3 thermometers. 20.4 2.2b.4 Demonstrate understanding of sensitivity, range and linearity. 2.2b.5 Describe the structure of a thermocouple and show 20.5 understanding of its use for measuring high temperatures and those that vary rapidly. Course outline_grade 10_STSCIS801_v3 Page 8 of 9

Conditions 1. May be on the job or in the ADVETI campus. Assessment Name Assessment Type Weighting Assessment Guidelines per course per 3terms ( year) Workplace Health & Safety Teacher Experience Portfolio Tasks 15 Activities (Major Assessment) Investigation/Project 3 Investigation (Minor Assessment) CA Task Major Test 6 Summative Tests (Minor Assessment) 3Exam (Major Assessment) 20% 20% 20% 40% Students should be aware of relevant health and safety issues in all situations, and demonstrate safe working practices at all times. Any serious omission will necessitate repeating the Course (or part thereof). The workplace must comply with current workplace health and safety legislation. Appropriate teaching experience Teachers must be able to demonstrate current technical competence at the level of the course being delivered and assessed. Ideally the teacher should have at least 3 years current relevant teaching experience. Course outline_grade 10_STSCIS801_v3 Page 9 of 9