Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Similar documents
2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Waves in plasma. Denis Gialis

Macroscopic plasma description

Heating and current drive: Radio Frequency

Introduction to Plasma Physics

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

Plasma waves in the fluid picture I

Fundamentals of wave kinetic theory

Space Physics. ELEC-E4520 (5 cr) Teacher: Esa Kallio Assistant: Markku Alho and Riku Järvinen. Aalto University School of Electrical Engineering

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018)

Space Plasma Physics Thomas Wiegelmann, 2012

Fluid equations, magnetohydrodynamics

Magnetohydrodynamic waves in a plasma

Cold plasma waves. Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

Chapter 9 WAVES IN COLD MAGNETIZED PLASMA. 9.1 Introduction. 9.2 The Wave Equation

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Plasma waves in the fluid picture II

Chapter 1. Introduction to Nonlinear Space Plasma Physics

MHD WAVES AND GLOBAL ALFVÉN EIGENMODES

Basic plasma physics

SW103: Lecture 2. Magnetohydrodynamics and MHD models

EXAMINATION QUESTION PAPER

Kinetic, Fluid & MHD Theories

Waves in Cold Plasmas: Two-Fluid Formalism

Waves in plasmas. S.M.Lea

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

Fourier transforms, Generalised functions and Greens functions

Lectures on basic plasma physics: Introduction

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Solar Physics & Space Plasma Research Center (SP 2 RC) MHD Waves

CHAPTER 9 ELECTROMAGNETIC WAVES

Vlasov-Maxwell Equations and Cold Plasma Waves

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

Magnetohydrodynamic Waves

Gyrokinetic simulations of magnetic fusion plasmas

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Fundamentals of Plasma Physics

Plasmas as fluids. S.M.Lea. January 2007

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere

SOLAR MHD Lecture 2 Plan

Introduction to Magnetohydrodynamics (MHD)

26. Non-linear effects in plasma

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Electromagneic Waves in a non- Maxwellian Dusty Plasma

Plasma Physics for Astrophysics

xkcd.com It IS about physics. It ALL is.

Introduction. Chapter Plasma: definitions

Jones calculus for optical system

Models for Global Plasma Dynamics

Simple examples of MHD equilibria

Single particle motion

Kinetic plasma description

A Study of 3-Dimensional Plasma Configurations using the Two-Fluid Plasma Model

6.1. Linearized Wave Equations in a Uniform Isotropic MHD Plasma. = 0 into Ohm s law yields E 0

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

Part VIII. Interaction with Solids

Introduction to Plasma Physics

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

Study Guide for Physics 1100 Final Exam

Electromagnetic fields and waves

Two ion species studies in LAPD * Ion-ion Hybrid Alfvén Wave Resonator

Turbulence in Tokamak Plasmas

MHD Linear Stability Analysis Using a Full Wave Code

RF cavities (Lecture 25)

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Single Particle Motion

Analysis of Jeans Instability of Partially-Ionized. Molecular Cloud under Influence of Radiative. Effect and Electron Inertia

Influence of Generalized (r, q) Distribution Function on Electrostatic Waves

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR

0 Magnetically Confined Plasma

Magnetospheric Physics - Final Exam - Solutions 05/07/2008

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Charged particle motion in external fields

Collisions and transport phenomena

Laser-plasma interactions

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping.

TURBULENT TRANSPORT THEORY

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Physique des plasmas radiofréquence Pascal Chabert

1 Energy dissipation in astrophysical plasmas

Computational Astrophysics

The Physics of Fluids and Plasmas

MHD Modes of Solar Plasma Structures

Propagation of Radio Frequency Waves Through Fluctuations in Plasmas

Plasma heating in stellarators at the fundamental ion cyclotron frequency

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学,

Wave-particle interactions in dispersive shear Alfvèn waves

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS. Jono Squire (Caltech) UCLA April 2017

Preface Introduction to the electron liquid

PHYSICS Computational Plasma Physics

With Modern Physics For Scientists and Engineers

Two-scale numerical solution of the electromagnetic two-fluid plasma-maxwell equations: Shock and soliton simulation

CLASSICAL ELECTRICITY

Natalia Tronko S.V.Nazarenko S. Galtier

The Nonlinear Schrodinger Equation

The evolution of solar wind turbulence at kinetic scales

Transcription:

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson

Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves plasma modified light waves Longitudinal plasma oscillations Warm plasmas longitudinal waves Debye shielding incomplete screening at finite temperature Langmuir waves Ion-acoustic (ion-sound) waves Alfvén waves - low frequency waves in magnetised plasmas Shear and fast Alfvén waves Magnetoionic waves Wave resonances & cut-offs CMA diagram Outline 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 2

Plasmas are ionised gases Introduction of plasma High temperature and low concentration; use Newtonian mechanics mv = q E + v B High conductivity difficult to produce charge separation plasmas are quasi-neutral; except at high frequency, ω > ω,-, electrons too heavy to react Magnetic fields: cause particles to follow gyro orbits v B force cause particles to gyrate around the magnetic field lines. Gyro frequency: Ω = qb/m Gyro radius: ρ = v/ω = mv/qb Plasmas can be very anisotropic, in fusion plasmas: σ σ 5 ~10 9 i.e. it is almost impossible to conduct currents perpendicular to B! 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 3

Plasma models There are many mathematical plasma models We have the cold plasma models, i.e. without thermal motion Magneto-ionic theory (inc. electron response, while ions are static) Cold plasma inc. both electron and ion responses And the general warm plasma model from lecture 5. This one can also be generalised to include magnetised plasmas. Many of these models are too complicated to analyse and solve Almost all practical solutions involve further approximations Typically: expand for a specific range of frequencies, wave lengths, or phase velocity Particularly important example: ω ω,;, ω Ω ;, V => k Ω ; These are the main conditions for the so called magneto-hydro dynamics model 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 4

The MHD model for a plasma Magneto-Hydro Dynamics (MHD), the most famous plasma model! It assumes low frequencies compared to the ion cyclotron frequency, ω Ω ; and the plasma frequency, ω ω,-. Assumption: electrons have an infinite small mass: E + v B = ηj This equation is referred to as Ohms law and η is the resistivity. In the rest frame, v = 0, we have the conventional Ohms law: E = ηj In many plasma application resistivity can be neglected E + v B = 0 Thus, there is no parallel electric field, E = 0 When in the rest frame without resistivity, E = 0 The mass continuity equation for the mass density ρ C : ρ C t + G (vρ C) = 0 but there are more equations! 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 5

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 6 Maxwell s equations for MHD The plasma moves with velocity v, momentum conservation: v ρ C + v G v = J B p t Note: the term v G v is non-linear in v, thus it s negligible for small amplitude waves Adiabatic pressure: pn MN = const, where γ = adiabatic index Apply gradient: n p = γp n Linearize for homogeneous plasmas: n U p V = γp U n V Defined equilibrium temperature, T U, such that p U = n U T U : p V = γt U n U The low frequency assumption in MHD simplify Maxwell s equations! Charge separation is impossible! G J = 0 & G E = 0 Slow events means that the phase velocity is smaller than c: B = μ U J

Maxwell s equations for MHD MHD equations ρ C ρ C t + G (vρ C) = 0 B = μ U J G B = 0 v t + v G v = J B p E = B t G E = 0 pn MN = const E + v B = ηj G J = 0 The MHD equations then includes 4 vector equations and 5 scalar equations; altogether 17 coupled differential equations!! Non-linear equations linearisation often required MHD equations are simplified by elimination of variable E.g. eliminate J using Ampere s law and E from Ohm s law Common simplification, resistivity η = 0, known as ideal MHD The plasma drift perpendicular to the field lines: v 5 = E B/B \ 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 7

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 8 Transverse waves - Modified light waves We ll get back to low frequency wave, but first high frequency! The waves equation in an unmagnetised plasmas, when k = ke _ K ;a = K ω δ ;a = 1 ω, \ ω \ δ ;a n \ κ ; κ a δ ;a + K ;a E a = K ω n \ 0 0 0 K ω n \ 0 0 0 K ω Dispersion equation: K ω n \ \ K ω = 0 Transverse waves Dispersion equation: ω \ = c \ k \ + ω, \ These waves are very weakly damped; Phase velocity: E V E \ E e = 1 ω, \ ω \ c\ k \ ω \ = 0 ω \ ω, \ c \ k \ = 0 thus no resonant particles and thus no Landau damping! 0 0 0

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 9 Plasma oscillations Plasma oscillations: the linear reaction of cold and unmagnetised electrons to electrostatic perturbations Cold electrons = the temperature is negligible. Dispersion equation (previous page): K ω n \ \ K ω = 0 Longitudinal part of dispersion eq.: K ω = 0 1 ω, \ ω \ = 0 ω\ = ω, \ Note: Thus, plasma oscillation is not a wave since no information is propagated by the oscillation! However, if we let the electrons have a finite temperature the plasma oscillations are turned into Langmuir waves!

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 10 Model equations: Physics of plasma oscillations Electrostatic perturbations follow Poisson s equation where Electron response is the charge density. Ion response; ions are heavy and do not have time to move: Charge continuity

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 11 Plasma oscillations Consider small oscillations near a static equilibrium: Non-linear (small term) where all the small quantities have sub-index 1. Next Fourier transform in time and space Dispersion relation: ω pe is the plasma frequency (see previous lecture)

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 12 Debye screening Debye screening is electron response to electrostatic perturbations Electrons tries to screen electric fields But due to thermal motion, fields that are static in rest frame are not static in the frame of a moving electron A moving electron reacts only slow changes, ω < ω,- Static perturbations are Doppler shifted by thermal motion: ω = kv Electrons moving with the thermal speed V => will only screen k > ω,- /V => Same fluid Eqs. as for plasma oscillations, but let pressure balance the electric force. Doppler shift included through the pressure, p = Tn -,V Force balance: 0 = en -U φ V T n -,V n -V = n -U eφ V T Poisson s eq.: ε U G φ V = en -,V G φ V = e\ n -U ε U T φ V Define the Debye length: λ k ω,- /V => = n -U e \ /ε U T k \ = n -Ue \ ε U T = ω \,- m - T = ω \,- V => \

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 13 Langmuir waves At finite temperature plasma oscillations turn into waves! Assume the plasma is isothermal, i.e. the temperature constant p t, x = γt - n t, x E.g. in collisionless plasmas. The equation of motion, of momentum continuity eq., then reads Linearise: Divergence: n - m - v - t = q -n -U φ γt - n - v -V n -U m - t = q -n -U φ V γt - n -V m - t n -U G v -V = q - n -U G φ V γt - G n -V Charge continuity Poisson s equation n -V m - t t = q - n -U q - ε U n -V γt - G n -V Dispersion equation: ω \ ω \,- + γv \ => k \ = 0 Dispersion relation : ω \ = ω \,- γv \ => k \ V => \ = T - /m - is the thermal speed

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 14 Langmuir waves Derivation of Langmuir waves from warm plasma tensor, k = ke _ Langmuir wave, the longitudinal solution: Neglect ions response and expand in small thermal electron velocity (almost cold electrons); use expansion in Eq. (10.30) φ y = 1 + 1 2y \ + 3 4y v + = 1 + k\ \ v =>,- ω \ + 3kv v v =>,- ω v + Letting v the =0 give plasma oscillations! λ k; = v =>,; /ω,; ω y ; = 2kv =>,; v =>,; = T ; /m ;

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 15 Polarization and damping of Langmuir waves Polarization vector e i can be obtained from wave equation when inserting the dispersion relation The wave damping can be written as where

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 16 Absorption of Langmuir waves Inserting the dispersion relation and the expression for K L gives the energy dissipation rate Damping (dissipation) is due to Landau damping, i.e. for electrons with velocities v such that Here N res is proportional to the number of Landau resonant electrons Damping is small for small & large thermal velocities Maximum in damping is when

Ion acoustic waves In addition to the Langmuir waves there is another important longitudinal plasma wave (i.e. K L =0) called the ion acoustic wave. This mode require motion of both ions and electrons. Assume: Fast electrons: v the >> ω/k, expansions (10.29) Slow ions: v thi << ω/k, expansions (10.30) electron ion Here v s is the sounds speed: v x = T/m ; Again, N res is proportional to the number of Landau resonant electrons Ion acoustic waves reduces to normal sounds waves for small kλ De 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 17

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 18 Physics of ion-acoustic waves Assume a hydrogen plasma: q ; = q - = e Electrostatic wave; we need Poisson s eq.: ε U G φ = en ; en - For electrons ion-acoustic waves have low frequency, ω ω,- ; neglect electron mass. eφ V 0 = q - n -U φ T n - n -V = n -U T Poission eq.: ε U G φ V + e \ n -U T MV φ V = en ;,V k \ + λ k M\ φ V = en ;,V For ions, ion-acoustic waves have low frequency, ω ω,; ; m ; n ; v ; = e φ γ ; T n ; Divergence of ion eq. of motion; ion mass continuity & Poission eq. m ; t n ;,U G v ;,V = en ;,U G φ V T G n ;,V Ion-acoustic waves ω \ m ; n ;,V = e\ n ;,U k \ n ;,V ε U k \ + λm\ γtk\ n ;,V ω \ = V x k λ \ k k \ + 1 + γ ;V \ x k \ ε U Not included on previous slide \ k \

Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves plasma modified light waves Longitudinal plasma oscillations Warm plasmas longitudinal waves Debye shilding incomplete screening at finite temperature Langmuir waves Ion-acoustic (ion-sound) waves Alfvén waves - low frequency waves in magnetised plasmas Shear and fast Alfvén waves Magnetoionic waves Wave resonances & cut-offs CMA diagram Outline 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 19

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 20 Alfven waves (1) Next: Low frequency waves in a cold magnetised plasma including both ions and electrons These waves were first studied by Hannes Alfvén, here at KTH in 1940. The wave he discovered is now called the Alfvén wave. To study these waves we choose: B e z and k = ( k x, 0, k ) The dielectric tensor for these waves were derived in the previous lecture assuming V A = Alfvén speed

Alfven waves (2) Wave equation for n j =ck j /ω If you put in numbers, then P is huge! Thus, third equations gives E 0 (E is the E-field along B) Why is E 0 for low frequency waves? electrons can react very quickly to any E perturbation (along B) and slowly to E y ande z, perpendicular to B Thus, they allow E-fields to be perpendicular, but not parallel to B! We are then left with a 2D system: 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 21

There are two eigenmodes: Alfven waves (3) The shear Alfvén wave (shear wave): Important in almost all areas of plasma physics e.g. fusion plasma stability, space/astrophysical plasmas, molten metals and other laboratory plasmas Polarisation: see exercise! The compressional Alfvén wave: (fast magnetosonic wave) E.g. used in radio frequency heating of fusion plasmas (my research field) Polarisation: see exercise! 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 22

Ideal MHD model for Alfven waves The most simple model that gives the Alfven waves is the linearized ideal MHD model for a To derive the Alfven wave equation we need four vector equations: Momentum balance (sum of electron and ion momentum balance; n e q e v e +n i q i v i =J) Ohms law (electron momentum balance when m e è0) Faraday s law Ampere s law 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 23

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 24 Wave equation for shear Alfven waves Derivation of wave equation for the shear wave 1. Substitute E from Ohms law into Faraday s law v B U = B t 2. Take the time derivative of the equation above and use the momentum balance to eliminate the velocity 1 mn j B U B U = \ B t \ 3. Assume the induced current to be perpendicular to B 0 B U \ mn j = \ B t \ 4. Finally use Ampere s law to eliminate j Wave equation with phase & group velocity V A

Physics of the shear Alfven waves In MHD the plasma is frozen into the magnetic field (see course in Plasma Physics) Plasmas are practically perfect conductor along B. When plasma move, it pulls the field line along with it (eq. 1 prev. page) The plasma give the field lines inertia, thus field lines bend back like guitar strings! Energy transfer during wave motion: B-field is bent by plasma motion; work needed to bend field line kinetic energy transferred into field line bending Field lines want to unbend and push the plasma back: energy transfer from field line bending to kinetic energy wave motion! B-field lines acts like strings: The Alfven wave propagates along field lines like waves on a string! Note: the group velocity always points in the direction of the magnetic field, thus it propagate along the fields lines! 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 25

Group velocities of the shear wave Dispersion relation for the shear Alfven wave: phase velocity: v g group velocity: B wave front moves with v pha, along k = ( k x, 0, k ) wave-energy moves with v ga, along B = ( 0, 0, B 0 )! Thus, a shear Alfven waves is trapped to follow magnetic field lines like waves propagating along a string Note also: k Fast magnetosonic wave is not dispersive! Thus, an external source may excite two Alfven wave modes propagating in different directions, with different speed 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 26

Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves plasma modified light waves Longitudinal plasma oscillations Warm plasmas longitudinal waves Debye shilding incomplete screening at finite temperature Langmuir waves Ion-acoustic (ion-sound) waves Alfvén waves - low frequency waves in magnetised plasmas Shear and fast Alfvén waves Magnetoionic waves Wave resonances & cut-offs CMA diagram Outline 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 27

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 28 Magnetoionic theory (cold electrons, static ions) Dielectric response in magnetoionic theory when B = Be _ S id 0 K ;a = id S 0 0 0 P \ ω \,- S = 1 ω,- ω \ Ω \, D = Ω ω ω \ Ω \, P = 1 ω,- ω \ General solutions are complex, see Melrose & McPhedran. Here we ll study k = ke y, i.e. perpendicular to B. S id 0 Λ ;a = id S n \ 0 0 0 P n \ Dispersion equation: P n \ S S n \ D \ = 0 Ordinary mode: n \ = P like electron gas! Extraordinary mode: n \ = S + k Š = = 1 Œ M Œ ( M Ž ) where ω \ =Ω \ + ω \,- is called the upper hybrid frequency \

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 29 Magnetoionic theory Magnetoionic dispersion relations have have singularities! Such singularities are called wave resonances, here at ω = ω In addition we have two places where n \ = 0, called cut-off points. 6 Resonance 4 ω,- Ω - ω n 2 2 0 Cut-off 2 Cut-off 4 0 200 400 600 800 1000 1200 Angular wave frequency, ω (GHz)

Resonances, cut offs & evanescent waves Dispersion relation often has singularities of the form The transitions to evanescent waves occur at either resonances ; k è, i.e. the wave length λ è 0 here at ω = ω res cut-offs ; k è 0, i.e. the wave length λ è Resonance here at ω = ω cut 3 regions with different types of waves ω < ω cut & ω > ω res, then k 2 > 0 n \ 4 2 Cut-off k (ω) 2 0 ω cut < ω < ω res, then k 2 < 0 0 1 2 ω/ω Η called evanescent waves (growing/decaying) 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 30 Evanescent region

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 31 Introduction to CMA diagram The cold plasma has three characteristic frequencies Plasma frequency, ω \, ~q \ - n - /m - Electron cyclotron frequency, Ω - = q - B U /m - Ion cyclotron frequency, Ω ; = q ; B U /m ; Two free parameters to characterise the plasma, n - and B U CMA diagrams show cut-offs and as function of ω, \ ~n - and Ω - = B U Ω - \ /ω \ m ; /m - ω = ω, ω = Ω ; Where are the resonances and the cut-offs? 1 ω = Ω - 1 ω, \ /ω \

2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 32 CMA diagram for cold plasma with ions and electrons This plasma model can have either 0, 1 or 2 wave modes These may be O- or X-mode Have left (L) or right (R) handed elliptic polarisation The modes are illustrated in the CMA diagram using 3 symbols representing different types of anisotropy: ellipse: eight : infinity : (don t need to know the details) When moving in the diagram mode disappear/appear at: resonances ; k è cut-offs ; k è 0 CMA diagram Light waves Alfven modes

Short summary of plasma waves Plasmas are ionised gases both electromagnetic and acoustic Many plasma model wide range on phenomena It is useful to categorise plasma waves by: Cold / warm how do the electrons respond to electron perturbation Cold: screens E-field if perturbation is slower than 1/ω,- Warm: cannot screen short wave length k MV λ k (in addition to ω ω,- ) Magnetised / unmagnetised: Response becomes gyrotropic; add characteristic frequencies Ω ; and Ω - Alfven wave: shear waves (like strings) & fast compressional waves High / low ω : compared to ω,, Ω - and Ω ;. For magnetised plasmas, waves in Ω ; < ω < Ω -, ω, are not treated here. High freq. Low freq. Cold, B = 0 Modified light waves No waves! Warm, B = 0 Mod. light and Langmuir waves Ion-acoustic waves Cold, B 0 Magnetoionic & cold plasma Cold plasma & MHD: Alfven waves Warm, B 0 Not in this course Not in this course 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 33