Chapter 1 Basic Concepts: Atoms

Similar documents
Chapter 1 Atomic Structure

Chapter 1 - Basic Concepts: atoms

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Electronic Theory of Chemistry

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Periodicity & Many-Electron Atoms

Lecture January 18, Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules

Nucleus. Electron Cloud

362 Lecture 6 and 7. Spring 2017 Monday, Jan 30

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2

The Quantum Mechanical Atom

Mendeleev s Periodic Law

Made the FIRST periodic table

Electron Arrangement - Part 2

Electron Configuration and Chemical Periodicity

THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important ones are...

I. Multiple Choice Questions (Type-I)

Schrodinger equation

Chapter 7 The Structure of Atoms and Periodic Trends

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

3. Write ground-state electron configurations for any atom or ion using only the Periodic Table. (Sections 8.3 & 9.2)

CHEM 1311A. E. Kent Barefield. Course web page.

Chapter 6 Part 3; Many-electron atoms

I. The Periodic Law and the Periodic Table. Electronic Configuration and Periodicity. Announcements Newland Law of Octaves

MANY ELECTRON ATOMS Chapter 15

Chapter 7. Electron Configuration and the Periodic Table

Development of atomic theory

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms?

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

Test Bank for General Chemistry Atoms First 2nd Edition by John E. McMurry and Robert C. Fay

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Chem 115 POGIL Worksheet - Week #9 Quantum Mechanical Model of Electronic Structure

Atomic structure & interatomic bonding. Chapter two

Chapter 1 Chemical Bonding

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

The Electronic Structure of Atoms

Chapter 8. Periodic Properties of the Elements

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

Chapter 3: Elements and Compounds. 3.1 Elements

Section 11: Electron Configuration and Periodic Trends

5.111 Lecture Summary #7 Wednesday, September 17, 2014

Chapter 7 Electron Configuration and the Periodic Table

נושא מס' 8: המבנה האלקטרוני של אטומים. Electronic Structure of Atoms. 1 Prof. Zvi C. Koren

Chapter 7 Electron Configuration and the Periodic Table

(FIRST) IONIZATION ENERGY

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Earth Materials I Crystal Structures

CHEMISTRY - BROWN 13E CH.7 - PERIODIC PROPERTIES OF THE ELEMENTS

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

- Some properties of elements can be related to their positions on the periodic table.

Chemistry 121: Atomic and Molecular Chemistry Topic 3: Atomic Structure and Periodicity

Chapter 6 Electronic Structure of Atoms

Chemistry 1A. Chapter 7

Lecture Presentation. Chapter 8. Periodic Properties of the Element. Sherril Soman Grand Valley State University Pearson Education, Inc.

CHEM Course web page. Outline for first exam period

1 Electrons and Chemical Bonding

6.4 Electronic Structure of Atoms (Electron Configurations)

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

CHEMISTRY - CLUTCH CH.8 - PERIODIC PROPERTIES OF THE ELEMENTS

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

Reporting Category 1: Matter and Energy

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

Arrangement of Electrons in Atoms

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table.

2. What is the wavelength, in nm, of light with an energy content of 550 kj/mol? a nm b nm c. 157 nm d. 217 nm e.

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds

Chem 6 Practice Exam 2

Chapter 8. Periodic Properties of the Element

The Periodic Table of the Elements

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean?

Atomic Structure and Electron Configuration

Chemistry 11. Unit 8 Atoms and the Periodic Table Part II Electronic Structure of Atoms

Atomic Structure & Interatomic Bonding

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

Atoms and Periodic Properties

Using the Periodic Table

The Periodic Law Notes (Chapter 5)

Chem 6 Sample exam 2 (150 points total) NAME:

RADIAL DISTRIBUTION FUNCTION- DEMYSTIFIED

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

Creating Energy-Level Diagrams Aufbau (building up) Principle Electrons are added to the lowest energy orbital available.

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Stability Nuclear & Electronic (then ion formation/covalent bonding)

The structure of the atom

Chapter 8. Mendeleev. Mendeleev s Predictions. Periodic Properties of the Elements

4.1 Atomic structure and the periodic table. GCSE Chemistry

Chapter 3 Classification of Elements and Periodicity in Properties

Topic 12: Quantum numbers. Heisenberg, Schrodinger, Quantum Theory, Quantum numbers, Practice

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

Professor K. Section 8 Electron Configuration Periodic Table

s or Hz J atom J mol or -274 kj mol CHAPTER 4. Practice Exercises ΔE atom = ΔE mol =

Electron Configuration and Chemical Periodicity. Chapter Eight. AP Chemistry

Transcription:

Chapter 1 Basic Concepts: Atoms CHEM 511 chapter 1 page 1 of 12 What is inorganic chemistry? The periodic table is made of elements, which are made of...? Particle Symbol Mass in amu Charge 1.0073 +1e 1.0087 0 5.486 10-4 -1e Define: atomic number (Z): Define: mass number (A): From general chemistry we recall that atoms of the same element all contain the same number of protons, but may or may not contain the same number of neutrons. Isotopes: Isotopes of hydrogen: Isobars: Isotones: How can you roughly tell, by looking at the periodic table, if an element has just one isotope (i.e., the element is a monotope)?

CHEM 511 chapter 1 page 2 of 12 Distinction of isotope with allotrope. Examples of allotropes with oxygen? sulfur (below) carbon? Inside the atom Early quantum mechanics (~1900-~1925) treated the electron as a particle. Why? http://web.physik.rwth-aachen.de/~harm/aixphysik/atom/discharge/index1.html Note that this equation works well for hydrogen and hydrogen-like atoms ONLY!! Limitations? Later quantum mechanics (~1925 and on) Think of the electron NOT as a particle, but as a wave. What else has this wave-particle duality? What is the wavelength of a 68 kg person walking at 4.0 mph (1.8 m/s)?

CHEM 511 chapter 1 page 3 of 12 Heisenberg s Uncertainty Principle HUP: It is impossible to know precisely the momentum and location of an electron simultaneously. Schrodinger s Wave Equation (Ψ) Ψ represents the wave function (as opposed to a particle function) of the electron it is based on x, y, z coordinates and time (for convenience, it may be better to use polar coordinates (r, θ, Φ)) Ψ describes the behavior of an electron in a specific region of space (i.e., an orbital); it is a mathematical function and can have positive or negative values a negative value doesn t mean the electron isn t present! Atomic Orbitals To define any orbital we need three quantum numbers: n, l,ml 1. Principal Quantum Number (n) Numerical values for n? 2. Orbital Quantum Number (l) aka orbital angular momentum Q. N. aka azimuthal Q. N. Numerical values for l? 3. Magnetic Quantum Number (ml) Numerical values for ml? To plot Ψ versus distance from the nucleus results in graphs like this:

4πr 2 R(r) 2 4πr 2 R(r) 2 CHEM 511 chapter 1 page 4 of 12 Another useful feature is to look at the squared function of the wavefunction (Ψ 2 ) (note, it isn t actually squared, Ψ is multiplied by a factor such that when integrated over all space, you are guaranteed to find the electron somewhere in that space). Your book actually applies an additional factor 4πr 2 (surface area of a sphere), as shown below. What can we infer about the shape (and size) of the s orbitals from these graphs? Radial distribution plot for 2p & 3p Probability plots for other orbitals

A note on radial nodes: to determine the number of radial nodes use the formula n-l-1. (This does not include nodal planes.) # of nodes for 1s: # of nodes for 2s: # of nodes for 3s: # of nodes for 2p: # of nodes for 3p: CHEM 511 chapter 1 page 5 of 12 p-orbitals d-orbitals The Orbitron shows informative pictures: http://winter.group.shef.ac.uk/orbitron/

CHEM 511 chapter 1 page 6 of 12 One more quantum number: the magnetic spin quantum number (m s ) aka spin quantum number) Moving charges generate magnetic fields thus two electrons close to each other must have opposite spins Pauli Exclusion Principle: Result of the PEP? Many Electron Atoms In a hydrogen atom (1 electron), all orbitals of the same n have the same energy Introduction of just one additional electron changes this and "splits" the energy of the orbitals. Why?

CHEM 511 chapter 1 page 7 of 12 Effective nuclear charge (Z eff ): That portion of the total nuclear charge that is experienced by a given electron. Z eff = Z actual S (Shielding factor) Slater s Rules for determining effective nuclear charge (empirically derived): Write the electron configuration in the following groupings: (1s), (2s, 2p), (3s, 3p), (3d), (4s, 4p), (4d), (4f), (5s, 5p), etc. Electrons higher than the electron of interest do not contribute to the shielding factor Electrons in s- and p-orbitals: o Each electron in (ns, np) contribute S = 0.35 o Each electron in the n-1 shell contribute S = 0.85 o Each electron in the n-2 or lower shells contribute S = 1.00 Electrons in d- or f-orbitals o Each of the other electrons in the other d- or f-orbitals contributes S = 0.35 o Each of the electrons in a lower group contributes S = 1.00 Why useful? It helps to determine electron configuration! EX. Determine the Z eff for the outermost electron in the following electron configurations: (a) 1s 2 2s 2 2p 6 (b) 1s 2 2s 2 2p 5 3s 1

The Classification of the Elements 1 What are the three main categories of elements according to the periodic table? CHEM 511 chapter 1 page 8 of 12 Important sections of the periodic table: main group elements transition metal elements rare earth elements aka inner transition elements Important families (aka groups) Group 1 (or 1A) Group 2 (or 2A) Group 15 (or 5A) Group 16 (or 6A) Group 17 (or 7A) Group 18 (or 8A) Group 11 (or 1B) 1 Other representations of the elements can be found here: http://www.meta-synthesis.com/webbook/35_pt/pt_database.php Dangerous potential time-sink!

CHEM 511 chapter 1 page 9 of 12 Brief review of electron configuration The ground state (lowest energy) electron configuration is determined by the Aufbau principle 1. 2. 3. Filling orbitals is straight forward until the d-block elements Determine the electron configuration of: B P Ti Cr Ni Cu Se Bi

CHEM 511 chapter 1 page 10 of 12 Core vs. valence electrons? How are cations created? How are anions created? Determine the electron configuration of: Na + P 3- Mn 4+ Xe - Fe 3+ Fe 2+ Ag + Periodic Trends Atomic radius: a measurement of the unionized form of an atom. metallic radius: Usual method for metals is to measure the distance between nuclei in the solid and divide by 2 covalent radius: For nonmetals, measure the distance between nuclei of a binary molecule and divide by 2 ionic radius: a measurement of an ion's size, usually derived from the distance between an oxygen nucleus and a metal ion. (an approximation only)!!

CHEM 511 chapter 1 page 11 of 12 Size trends within the periodic table? Down a group? Across a period? Note: transition metals in the 5th and 6th periods are nearly the same size!! The period 6 atoms have 32 MORE electrons than the period 5 atoms. How can they be the same size? Atomic Radii (pm) Period 5 Zr Nb Mo Tc Ru Rh Pd Ag 160 147 140 135 134 134 137 144 Period 6 Hf Ta W Re Os Ir Pt Au 159 147 141 137 135 136 139 144 What do we know about the relative size of cations to parent atoms? anions to parent atoms? Cations are smaller than the parent (neutral) atoms Anions are larger than the parent (neutral) atoms Ionization energy: Energy needed to remove an electron from an isolated atom in the gas phase

CHEM 511 chapter 1 page 12 of 12 Based on this figure, what are the periodic trends for E i1? Down a group? Across a period? What about the dips at Be-B and N-O? Electron Affinity: The energy gained or released when an electron is added to the valence shell of an isolated atom in the gas phase.