Charged Cosmic Rays and Neutrinos

Similar documents
Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Cosmic Rays, Photons and Neutrinos

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

Multi-Messenger Astonomy with Cen A?

A few grams of matter in a bright world

News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

OVERVIEW OF THE RESULTS

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Cosmic Ray Astronomy. Qingling Ni

Ultra- high energy cosmic rays

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Mass Composition Study at the Pierre Auger Observatory

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

Cosmogenic neutrinos II

Origin of cosmic rays

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Secondary particles generated in propagation neutrinos gamma rays

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

Air Shower Measurements from PeV to EeV

Cosmic Rays in large air-shower detectors

Revue sur le rayonnement cosmique

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

UHECR: Acceleration and Propagation

From the Knee to the toes: The challenge of cosmic-ray composition

High-energy cosmic rays

Particle Physics Beyond Laboratory Energies

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

Implications of recent cosmic ray results for ultrahigh energy neutrinos

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

Ultra High Energy Cosmic Rays: Observations and Analysis

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector.

Antimatter from Supernova Remnants

The Pierre Auger Observatory Status - First Results - Plans

Ultrahigh Energy cosmic rays II

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Latest results and perspectives of the KASCADE-Grande EAS facility

Ultra-High Energy AstroParticles!

Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

IMPACT OF OSCILLATIONS ON UHE NEUTRINO ASTRONOMY

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

EeV Neutrinos in UHECR Surface Detector Arrays:

Recent Results from the KASCADE-Grande Data Analysis

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Cosmic-ray energy spectrum around the knee

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration

Diffusive shock acceleration with regular electric fields

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

The air-shower experiment KASCADE-Grande

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

COSMIC RAY ACCELERATION

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Particle Acceleration at Supernova Remnants and Supernovae

Experimental High-Energy Astroparticle Physics

Cosmic Rays in large air-shower detectors

arxiv: v1 [astro-ph.he] 14 Jul 2017

Ultra-High Energy Cosmic Rays (III)

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

UHECR: PROGRESS AND PROBLEMS

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

UHECR and HADRONIC INTERACTIONS. Paolo Lipari Searching for the origin of Cosmic Rays Trondheim 18th June 2009

Ultrahigh Energy Cosmic Rays propagation II

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Measurement of air shower maxima and p-air cross section with the Telescope Array

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A.

Quoi de neuf en astroparticules? Damien Dornic 22/10/07

Open questions with ultra-high energy cosmic rays

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Ultra High Energy Cosmic Rays I

On the GCR/EGCR transition and UHECR origin

UHECRs sources and the Auger data

Extremely High Energy Neutrinos

The role of ionization in the shock acceleration theory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

Questions 1pc = 3 ly = km

Seeing the moon shadow in CRs

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

Recent results from the Pierre Auger Observatory

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II

arxiv: v1 [astro-ph.he] 27 Dec 2018

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES

Dark Matter in the Universe

Absorption and production of high energy particles in the infrared background

IceCube: Ultra-high Energy Neutrinos

The High Resolution Fly s Eye (HiRes) Experiment. John N. Matthews University of Utah

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

On the measurement of the proton-air cross section using air shower data

Transcription:

Charged Cosmic Rays and Neutrinos Michael Kachelrieß NTNU, Trondheim []

Introduction Outline of the talk 1 Introduction talk by F. Halzen 2 SNRs as Galactic CR sources 3 Extragalactic CRs transition anisotropies composition measurements 4 Astrophysical source models talks of S. Ando & F. Halzen 5 Cosmogenic neutrinos 6 Summary Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 2 / 25

Introduction Outline of the talk 1 Introduction talk by F. Halzen 2 SNRs as Galactic CR sources 3 Extragalactic CRs transition anisotropies composition measurements 4 Astrophysical source models talks of S. Ando & F. Halzen 5 Cosmogenic neutrinos 6 Summary Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 2 / 25

Introduction Outline of the talk 1 Introduction talk by F. Halzen 2 SNRs as Galactic CR sources 3 Extragalactic CRs transition anisotropies composition measurements 4 Astrophysical source models talks of S. Ando & F. Halzen 5 Cosmogenic neutrinos 6 Summary Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 2 / 25

Introduction The CR γ ν connection: HE neutrinos and HE photons are unavoidable byproducts of HECRs astrophysical models, direct flux: strongly model dependent fluxes Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 3 / 25

Introduction The CR γ ν connection: HE neutrinos and HE photons are unavoidable byproducts of HECRs astrophysical models, direct flux: strongly model dependent fluxes astrophysical models, cosmogenic flux: ratio Iν /I N determined by nuclear composition and source evolution Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 3 / 25

Introduction The CR γ ν connection: HE neutrinos and HE photons are unavoidable byproducts of HECRs astrophysical models, direct flux: strongly model dependent fluxes astrophysical models, cosmogenic flux: ratio Iν /I N determined by nuclear composition and source evolution top-down models: large fluxes with Iν I p ratio Iν /I p fixed by fragmentation Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 3 / 25

Introduction The CR γ ν connection: HE neutrinos and HE photons are unavoidable byproducts of HECRs astrophysical models, direct flux: strongly model dependent fluxes astrophysical models, cosmogenic flux: ratio Iν /I N determined by nuclear composition and source evolution top-down models: large fluxes with Iν I p ratio Iν /I p fixed by fragmentation prizes to win: astronomy above 0 TeV identification of CR sources determine galactic extragalactic transition of CRs test/discover new particle physics Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 3 / 25

[]

Diffusive shock acceleration in test particle picture: energy spectrum dn/de 1/E 2 escape flux dn/dr exp( (r R sh )/x 0 ) for r > R sh []

SNRs as CR sources SNR: Leptonic versus hadronic models [ Giordano ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 5 / 25

SNRs as CR sources SNR: Leptonic versus hadronic models [ Giordano ] combining Fermi and IACT contrains models tightly Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 5 / 25

SNRs as CR sources Maximal energy of SNR: Lagage-Cesarsky limit acceleration rate β acc = de dt = 3Ev2 sh acc ζd(e), ζ 8 20 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 6 / 25

SNRs as CR sources Maximal energy of SNR: Lagage-Cesarsky limit acceleration rate β acc = de dt = 3Ev2 sh acc ζd(e), ζ 8 20 assume Bohm diffusion D(E) = cr L /3 E and B µg Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 6 / 25

SNRs as CR sources Maximal energy of SNR: Lagage-Cesarsky limit acceleration rate β acc = de dt = 3Ev2 sh acc ζd(e), ζ 8 20 assume Bohm diffusion D(E) = cr L /3 E and B µg E max 13 14 ev Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 6 / 25

SNRs as CR sources Maximal energy of SNR: [Bell, Luzcek 02, Bell 04 ] (resonant) coupling CR Alfven waves Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 7 / 25

SNRs as CR sources Maximal energy of SNR: [Bell, Luzcek 02, Bell 04 ] (resonant) coupling CR Alfven waves non-linear non-resonant magnetic field amplification Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 7 / 25

SNRs as CR sources Maximal energy of SNR: [Bell, Luzcek 02, Bell 04 ] (resonant) coupling CR Alfven waves non-linear non-resonant magnetic field amplification observational evidence for B 0.1 1 mg in young SNR rims Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 7 / 25

SNRs as CR sources SNR RX J1713.7-3946 changes on δt 1 yr imply B 1mG E max 16 ev for protons Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 8 / 25

SNRs as CR sources Tycho observations by VERITAS Γ = 1.95 ± 0.51 stat ± 0.30 sys Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 9 / 25

SNRs as CR sources Tycho observations by VERITAS Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 9 / 25

SNRs as CR sources Tycho observations by VERITAS CRs escape before Sedov phase Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 / 25

SNRs as CR sources Tycho observations by VERITAS CRs escape before Sedov phase E γ,max > TeV requires: protons with E > 0 TeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 / 25

SNRs as CR sources Tycho observations by VERITAS CRs escape before Sedov phase E γ,max > TeV requires: protons with E > 0 TeV electrons, ICS on CMB E γ = 4 ε γ Ee 2 3 m 2 e 3 GeV ( ) 2 Ee 1TeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 / 25

SNRs as CR sources Tycho observations by VERITAS CRs escape before Sedov phase E γ,max > TeV requires: protons with E > 0 TeV electrons, ICS on CMB E γ = 4 ε γ Ee 2 3 m 2 e electrons with E > 50 TeV 3 GeV ( ) 2 Ee 1TeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 / 25

SNRs as CR sources Tycho: Leptonic versus hadronic models [Morlino, Capriolo 11 ] 13.5 13.0 Log Ν FΝ Jy Hz 12.5 12.0 11.5 11.0.5 Radio Suzaku FermiLAT VERITAS.0 9.5 15 20 25 Log Ν Hz Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 11 / 25

SNRs as CR sources Why is there a universal CR spectrum? age-limited CRs are advected down-stream, released at end of Sedov phase adiabatic losses, reduced E max, no B amplification Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 12 / 25

SNRs as CR sources Why is there a universal CR spectrum? age-limited CRs escape up-stream: standard approach: homogeneous field & free escape boundary Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 12 / 25

SNRs as CR sources Why is there a universal CR spectrum? age-limited CRs escape up-stream: standard approach: homogeneous field & free escape boundary filamentation instability: [Reville, Bell 11 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 12 / 25

SNRs as CR sources Why is there a universal CR spectrum? age-limited CRs escape up-stream: standard approach: homogeneous field & free escape boundary filamentation instability: [Reville, Bell 11 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 12 / 25

Transition from Galactic to extragalactic CRs Nuclear composition Transition KASCADE Grande data s -1 sr -1 ev -2 E [m 2.5 1.5 ] 17 16 di/de 15 14 13 14 Grande QGSJETII, all-particle (this work) Grande QGSJETII, hydrogen (this work) Grande QGSJETII, He+C+Si (this work) Grande QGSJETII, iron (this work) KASCADE QGSJETII, all-particle (this work) KASCADE QGSJETII, hydrogen (this work) KASCADE QGSJETII, He+C+Si (this work) KASCADE QGSJETII, iron (this work) 15 16 17 18 EAS-TOP, all-particle Akeno, all-particle HiRes II, all-particle GAMMA, all-particle Tibet, all-particle 19 energy (ev/particle) 20 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 13 / 25

Transition from Galactic to extragalactic CRs Nuclear composition Transition KASCADE Grande data s -1 sr -1 ev -2 E [m 2.5 1.5 ] 17 16 di/de 15 14 13 14 Grande QGSJETII, all-particle (this work) Grande QGSJETII, hydrogen (this work) Grande QGSJETII, He+C+Si (this work) Grande QGSJETII, iron (this work) KASCADE QGSJETII, all-particle (this work) KASCADE QGSJETII, hydrogen (this work) KASCADE QGSJETII, He+C+Si (this work) KASCADE QGSJETII, iron (this work) 15 16 17 rising proton fraction E > 17 ev? 18 EAS-TOP, all-particle Akeno, all-particle HiRes II, all-particle GAMMA, all-particle Tibet, all-particle 19 energy (ev/particle) 20 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 13 / 25

Transition from Galactic to extragalactic CRs Anisotropies PAO result on dipole anisotropy: Amplitude 1-1 -2-3 Rayleigh Analysis East/West Analysis 0.3 1 2 3 4 5 20 E [EeV] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 14 / 25

Transition from Galactic to extragalactic CRs Anisotropies PAO result on dipole anisotropy: Phase [ ] 180 90 0 270 180 0.3 1 2 3 4 5 20 East/West analysis Rayleigh analysis E [EeV] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 14 / 25

Transition from Galactic to extragalactic CRs Anisotropies Anisotropy of protons at E = 18 ev [Giacinti et al. 11 ] Dipole amplitude (percent) 40 35 30 25 20 15 Profile 2, 200 pc Profile 1, 200 pc Profile 2, 500 pc Profile 1, 500 pc 2 3 4 5 6 7 8 B 0 (µg) protons excluded for all reasonable parameters measuring protons at E = 18 ev means fixing transition energy Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 15 / 25

Nuclear composition Energy spectrum PAO confirmed the GZK-suppression seen first by HiRes Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 16 / 25

Nuclear composition Energy spectrum PAO confirmed the GZK-suppression seen first by HiRes interpretation: Emax of sources? does not fix composition: proton GZK, Fe photo disintegration Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 16 / 25

Nuclear composition Determining nuclear composition: X max and RMS(X max ) Bethe-Heitler model: N max E 0 and X max ln(e 0 ) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 17 / 25

Nuclear composition Determining nuclear composition: X max and RMS(X max ) Bethe-Heitler model: N max E 0 and X max ln(e 0 ) superposition model: nuclei = A shower with E = E 0 /A X max ln(a) and RMS(X max ) reduced Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 17 / 25

Nuclear composition Determining nuclear composition: X max and RMS(X max ) Bethe-Heitler model: N max E 0 and X max ln(e 0 ) superposition model: nuclei = A shower with E = E 0 /A X max ln(a) and RMS(X max ) reduced Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 17 / 25

Nuclear composition Determining nuclear composition: X max and RMS(X max ) Bethe-Heitler model: N max E 0 and X max ln(e 0 ) superposition model: nuclei = A shower with E = E 0 /A X max ln(a) and RMS(X max ) reduced Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 17 / 25

Nuclear composition Determining nuclear composition: X max and RMS(X max ) Bethe-Heitler model: N max E 0 and X max ln(e 0 ) superposition model: nuclei = A shower with E = E 0 /A X max ln(a) and RMS(X max ) reduced RMS(X max ) has smaller theoretical error than X max Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 17 / 25

Nuclear composition Nuclear composition via X max : ] 2 <X max > [g/cm 850 800 750 QGSJET01 QGSJETII Sibyll2.1 EPOSv1.99 proton 700 650 iron Auger 2009 HiRes ApJ 2005 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 18 / 25

Nuclear composition Nuclear composition via RMS(X max ) from Auger: ] 2 ) [g/cm max 70 60 18 proton 19 E [ev] RMS(X 50 40 30 20 18 iron 19 E [ev] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 19 / 25

Nuclear composition Mixed composition: 0.12 Mean 744.8 RMS 62.02 0.1 0.08 0.06 70% proton 30% iron sum 0.04 0.02 0 600 650 700 750 800 850 900 950 2 X max [g/cm ] σ 2 = f i σi 2 + f i f j (X max,i X max,j ) 2 i i<j Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 20 / 25

Nuclear composition What goes wrong? internal discrepancy in PAO: AGN correlations favor protons RMS(Xmax ) favors heavy energy spectrum, Xmax and RMS(X max ) difficult to fit experimental discrepancy: HiRes/TA Auger Xmax RMS(Xmax ) discrepancy experiment theory: energy ground array/fluoresence 1.2 muon number exp/mc 1.2 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 21 / 25

Nuclear composition What goes wrong? internal discrepancy in PAO: AGN correlations favor protons RMS(Xmax ) favors heavy energy spectrum, Xmax and RMS(X max ) difficult to fit experimental discrepancy: HiRes/TA Auger Xmax RMS(Xmax ) discrepancy experiment theory: energy ground array/fluoresence 1.2 muon number exp/mc 1.2 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 21 / 25

Nuclear composition What goes wrong? internal discrepancy in PAO: AGN correlations favor protons RMS(Xmax ) favors heavy energy spectrum, Xmax and RMS(X max ) difficult to fit experimental discrepancy: HiRes/TA Auger Xmax RMS(Xmax ) discrepancy experiment theory: energy ground array/fluoresence 1.2 muon number exp/mc 1.2 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 21 / 25

Nuclear composition Comparison of MCs to LHC data: Energy flow PYTHIA as typical HEP model Cosmic ray interaction models Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 22 / 25

Cosmogenic neutrinos Limit from EGRB Fermi-LAT limit for cosmogenic neutrinos: [Berezinsky et al.,... ] E 2 J(E), ev cm -2 s -1 sr -1 4 z max =2, E max = 21 ev Fermi LAT 2 0 p HiRes -2 6 8 12 14 16 18 20 22 E, ev Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 23 / 25

Cosmogenic neutrinos Limit from EGRB Fermi-LAT limit for cosmogenic neutrinos: [Berezinsky et al.,... ] -1 m -2 sec -1 ster 2 J(E) ev 3 E 25 24 23 2.7 HiRes II 21 z max =2; E max = ev; m=0 HiRes I 2.0 2.7 p 2.0 2.7 2.0 Σν i 18 19 E, ev 20 21 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 23 / 25

Cosmogenic neutrinos Limit from EGRB Fermi-LAT limit for cosmogenic neutrinos: [Berezinsky et al.,... ] -4 E max = 21 ev 6 5 (m), ev/cm3 cas -5-6 -7 5.8x -7 2 2-8 0 1 2 3 4 5 6 m 4 4 6 5 =2.0 g =2.6 g Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 23 / 25

Cosmogenic neutrinos Limit from EGRB Fermi-LAT limit for cosmogenic neutrinos: [Berezinsky et al.,... ] E 2 J(E), evcm -2 s -1 sr -1 6 5 4 3 2 1 0-1 Auger diff. RICE BAIKAL ANITA-lite Auger E -2 cascade JEM-EUSO IceCube 5yr 20 m=3 21 ANITA e = 2.6 2.0 tilted 16 17 18 19 20 21 22 E, ev nadir 22 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 23 / 25

Cosmogenic neutrinos Limit from EGRB Fermi-LAT limit for cosmogenic neutrinos: [Berezinsky et al.,... ] 0.01 ng E 2 J (E), ev cm -2 s -1 sr -1 0 1 ng m=0, g =2.0, z max =2, E max = 21 ev -2 8 12 14 E, ev Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 23 / 25

Cosmogenic neutrinos Dependence on composition Cosmogenic neutrinos: proton vs. Fe [Anchordoqui et al. 07 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 24 / 25

Summary Summary Galactic CRs: Tycho: room left for leptonic models marginal UHECRs: understanding differences PAO vs. TA and MC vs. experiment extensions (HEAT, Amiga, infill array) allow cross checks test of MC models against LHC data proton dominance at 18 ev fixes transition energy cosmogenic neutrino flux is low, because of Fermi limit 2 Icecube events: start of neutrino astronomy? Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 25 / 25

New TA data for X max : Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 26 / 25

Zenith angle dependence, TA scintillator: Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 27 / 25

Zenith angle dependence, TA scintillator: Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 27 / 25

Icecube events Icecube events 2 cascade events close to E min = 15 ev, bg = 0.14 energy distributions of neutrinos reaching to the IceCube Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 28 / 25

Icecube events Icecube events 2 cascade events close to E min = 15 ev, bg = 0.14 Glashow resonance very narrow if W qq, detected energy too low Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 28 / 25

Icecube events Icecube events 2 cascade events close to E min = 15 ev, bg = 0.14 Glashow resonance cosmogenic neutrinos: < 1 events/yr [Anchordoqui et al. 07 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 28 / 25

Icecube events Icecube events 2 cascade events close to E min = 15 ev, bg = 0.14 Glashow resonance cosmogenic neutrinos: < 1 events/yr extragalactic sources: extension to higher energies? if yes, then diffuse flux Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 28 / 25

Icecube events Icecube events 2 cascade events close to E min = 15 ev, bg = 0.14 Glashow resonance cosmogenic neutrinos: < 1 events/yr extragalactic sources: extension to higher energies? if yes, then diffuse flux Galactic point sources: SNR with d 50 pc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays and Neutrinos NOW 2012 28 / 25