The$Macrophysics$&$ Microphysics$of$Cosmic$Rays$

Similar documents
The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization!

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014

Cosmic Rays & Magnetic Fields

Cosmic Pevatrons in the Galaxy

Shocks. Ellen Zweibel.

Plasma Physics for Astrophysics

Turbulence & particle acceleration in galaxy clusters. Gianfranco Brunetti

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS. Jono Squire (Caltech) UCLA April 2017

The MRI in a Collisionless Plasma

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays

Cosmic-ray Acceleration and Current-Driven Instabilities

Particle Acceleration at Supernova Remnants and Supernovae

Diffusive Particle Acceleration (DSA) in Relativistic Shocks

Review of electron-scale current-layer dissipation in kinetic plasma turbulence

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks

Diffusive shock acceleration with regular electric fields

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

Greg Hammett Imperial College, London & Princeton Plasma Physics Lab With major contributions from:

COSMIC RAY ACCELERATION

arxiv: v2 [astro-ph.he] 29 Jan 2015

Cosmic Rays, Photons and Neutrinos

Cosmic Ray Astronomy. Qingling Ni

Heating of Test Particles in Numerical Simulations of MHD Turbulence and the Solar Wind

arxiv: v1 [astro-ph.he] 18 Aug 2009

Nonlinear processes associated with Alfvén waves in a laboratory plasma

Intracluster Medium Plasmas

Magnetic fields generated by the Weibel Instability

Wave Phenomena and Cosmic Ray Acceleration ahead of strong shocks. M. Malkov In collaboration with P. Diamond

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

Cosmic Rays in the Galaxy

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

Kinetic Turbulence in the Terrestrial Magnetosheath: Cluster. Observations

The Weibel Instability in Collisionless Relativistic Shocks

X-RAY STRIPES IN TYCHO S SUPERNOVA REMANT: SYNCHROTRON FOOTPRINTS OF A NONLINEAR COSMIC RAY-DRIVEN INSTABILITY

Feedback in Galaxy Clusters

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants

Simulation results for magnetized plasmas

Kinetic Alfvén waves in space plasmas

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

Ultra High Energy Cosmic Rays I

Supernova Remnants and Cosmic. Rays

Simulations of cosmic ray cross field diffusion in highly perturbed magnetic fields

The Physics of Fluids and Plasmas

On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks

THE PHYSICS OF PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS

8.2.2 Rudiments of the acceleration of particles

Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Electron-Acoustic Wave in a Plasma

Fundamentals of wave kinetic theory

Density Waves and Chaos in Spiral Galaxies. Frank Shu NTHU Physics Department 7 December 2005

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley)

magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail

Astrofysikaliska Dynamiska Processer

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

Dissipation Scales & Small Scale Structure

Seeing the moon shadow in CRs

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Open questions with ultra-high energy cosmic rays

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

particle acceleration in reconnection regions and cosmic ray excess from the heliotail

Revue sur le rayonnement cosmique

2 Relativistic shocks and magnetic fields 17

Cosmic ray escape from supernova remnants

Forced hybrid-kinetic turbulence in 2D3V

Mechanisms for particle heating in flares

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

Studies of Turbulence-driven FLOWs:

Nonlinear MHD effects on TAE evolution and TAE bursts

arxiv: v2 [astro-ph] 16 May 2007

arxiv: v3 [astro-ph.he] 19 Sep 2016

Particle acceleration at relativistic shock waves and gamma-ray bursts

Low-Energy Cosmic Rays

MULTI-FLUID PROBLEMS IN MAGNETOHYDRODYNAMICS WITH APPLICATIONS TO ASTROPHYSICAL PROCESSES

isocurvature modes Since there are two degrees of freedom in

arxiv: v1 [astro-ph] 25 Jun 2008

Modern Challenges in Nonlinear Plasma Physics A Conference Honouring the Career of Dennis Papadopoulos

The Physics & Astrophysics of Cosmic Rays

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds

Potential Neutrino Signals from Galactic γ-ray Sources

Relativistic reconnection at the origin of the Crab gamma-ray flares

Acceleration Mechanisms Part I

The Superbubble Power Problem: Overview and Recent Developments. S. Oey

Confinement of CR in Dark Matter relic clumps

Mikhail V. Medvedev (KU)

Origin of Magnetic Fields in Galaxies

The evolution of solar wind turbulence at kinetic scales

High Energy Particle Production by Space Plasmas

SCATTERING OF ELECTROMAGNETIC WAVES ON TURBULENT PULSATIONS INSIDE A PLASMA SHEATH

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn

High energy radiation from molecular clouds (illuminated by a supernova remnant

Transcription:

The$Macrophysics$&$ Microphysics$of$Cosmic$Rays$ Ellen$Zweibel$ University$of$Wisconsin=Madison$ Erin%Boe)cher,%Chad%Bustard,%Cory%Co)er,%Elena%D Onghia,% John%Evere),%Jay%Gallagher,%Peng%Oh,%Mateusz%Ruszkowski,% Josh%Wiener,Karen%Yang,%%Tova%YoastFHull% % Supported%by%the%NSF%&%the%UW%

Cosmic$Rays$are$Pervasive$

Tools+&+Systems+ Direct+probes+ In+situ+par/cle+detectors+ Telescopes+from+radio+to+γ6ray++ ν+detectors+ Indirect+probes+ Astrochemical+modeling+ Geology+ Natural+and+lab+plasmas+ Space+&+solar+ Diffuse+and+HED+

Proper@es$ Highly$isotropic$&$ resident$for$~10myr$

(An)Isotropy! Left: The distribution of cosmic ray arrival directions is highly isotropic, up to the knee. Right: Weak fluctuations at TeV energies have been discovered recently & challenge theory.' Hillas 1984! Abbasi et al. 2010!

Cosmic+Ray+Accelera/on+ Blue:+x6rays+ +Supernova+1006+ Curved+shock+front+ (red),+fluid+flow+in+ frame+of+shock+(black+ arrows),+magne/c+ fieldlines+in+purple.+ NASA+image+

Diffusive+Shock+Accelera/on+ Par/cles+are+scaVered+back+and+ forth+across+the+shock+by+ waves+and+turbulence+they+ generate+themselves,+resul/ng+ in+a+power+law+spectrum+that+ depends+on+the+shock++ compression+ra/o.+ Maximum+E+is+set+ by++shock+evolu/on+ &+geometry.+ E "2$ for$strong$ shock$

Overarching+Ques/ons+ How+does+10 69+ of+interstellar+par/cles+come+to+ have+as+much+energy+as+the+thermal+pool?+ Observa/onal+probes+ Accelera/on+&+propaga/on+processes+ How+does+this+virtually+collisionless+ component+interact+with+the+thermal+gas+&+ magne/c+field?+ Kine/c+instabili/es+ Fluid+treatments+

Extend$to$Other$Galaxies$ Fits$to$the$γ=ray$spectrum$of$M82:$LeO$is$best$fit$to γ=ray$spectrum,$ Right$is$best$fit$to$radio$spectrum.$Milky$Way=like$assump@ons$about$ cosmic$ray$accelera@on$produce$good$fits$(yoast=hull$et$al$2013)$

Breakdown$of$Equipar@@on$ Yoast=Hull$l$et$al.$2015$

Milky$Way$Central$Molecular$Zone$

$Coupling$to$the$Thermal$Gas$ $$$$$$$$$$$$$$Collisional$ Ioniza@on$ Hea@ng$ Chemistry$ Radia@ve$Processes$ γ=rays$from$π 0 $decay$&$ inverse$comp@on$ Bremsstrahlung$ Light$element$$produc@on$ $$$$$$$$$$$$Collisionless$ Momentum$&$energy$ exchange$mediated$by$the$ ambient$magne@c$field.$ Fermi,$Parker,$Kulsrud$ The$subject$of$this$talk$

Plan$of$This$Talk$ Mo@va@on$ Classical$Cosmic$Ray$Hydrodynamics$ Generalized$Cosmic$Ray$Hydrodynamics$ Jus@fica@on$for$approximate$treatments?$ Beyond$Alfven$Waves$ Going$to$extremes$ Unfinished$business$

Galac@c$Winds:$One$Mo@va@on$ Steady,$spherically$ symmetric,$pressure$driven$ ouclow$a%la%chevalier$&$ Clegg$1985$but$extended.$ Cory$Cofer$&$Chad$Bustard$ %%%%%%(Bustard,%EZ,%D Onghia%2015)$ $ Rela@vis@c$$fluid$cools$more$ slowly$&$drives$a$faster$ wind.$ $ $$

Milky$Way$Wind$

Recent$Simula@ons$of$a$Star=Forming$ Disk$ LeO:$Ini@ally$toroidal$magne@c$field,$no$cosmic$rays.$Right:$With$cosmic$rays.%Ruszkowski,% Yang,%EZ%in%preparaVon.%

Perpendicular$Dynamics$are$Easy$ Pressure$gradient$introduced$ through$lorentz$force$

$$$$$$Parallel$Dynamics$are$Subtle$

Gyroresonant Scattering Orbits$follow fieldlines and short wavelength fluctuations average out. Gyroresonant fluctuations (Doppler shifted frequency kv parallel = ω cr ) scatter in pitch angle cos -1 µ. 5 resonant$ 0 nonresonant$ 5 0 5 10 15 20

Gyroresonant$Streaming$Instability$ $resonance$$$$$$ damping$ excita@on$by$anisotropy$ Simple$approxima@on$to$the$growth$rate:$ Here$&$elsewhere$I m$interested$in$the$bulk$ cosmic$rays$w$γ$~$1$

Fokker$ $Planck$(F=P)$Equa@on$ Back$reac@on$of$waves$on$zero$order$cosmic$ray$distribu@on$func@on$f 0$ Pitch$angle$scafering$(D µµ )$dominates:$$ Scafering$frequency$$$$$$$ν$~$ω c (δb/b) 2 $$ Small angle Scattering by nearly periodic randomly phased waves D pµ $=$D µp $are$order$(v A /c)$ D pp $is$order$(v A /c) 2$

Energy$$Equa@on$ Mul@ply$F=P$eqn.$by$par@cle$energy$ε$&$ integrate$over$momentum$space:$ $ Energy$density$$$$$Energy$flux$$$$$$$$$$$$$Energy$transfer$to$waves$

$Frequent$Scafering$Approxima@on$ Relate$anisotropy$to$spa@al$gradient:$ Energy$equa@on$simplifies$to:$ frictional heating

Equa@on$for$Waves$ From$Dewar s$theory:$ Driving$&$dissipa@on$ $$$Adiaba@c$terms$ Hea@ng$rate$

Fluid$Treatment$ Classical$Cosmic$Ray$Hydrodynamics$(CCRH)$ Equa@ons$developed$by$Volk$&$collaborators$based$ on$self=confinement$model$ Stream$down$pressure$gradient$at$v A $rela@ve$to$ thermal$gas$(care%needed%in%implemenvng%this).% Transfer$momentum$through$pressure$gradient$ = Heat$gas$at$ v A# grad#p c.$ = Diffusion$along$B$with$diffusivity$κ v 2 /ν Αpplied$to$shocks,$galac@c$winds,$ISM$hea@ng,$ intracluster$medium.$

Approxima@ons$&$Improvisa@ons$ Include$grad$P c,$advect$with$fluid,$ignore$ hea@ng,$$diffusion$if$any$is$isotropic.$ No$magne@c$field$calcula@on$necessary$(implicitly% stochasvc%on%gyroradius%scale).% No$need$to$ensure$streaming$is$down$grad$P c.$ Include$streaming$rela@ve$to$thermal$gas$&$ fric@onal$hea@ng,$but$replace$v A $by$thermal$ sound$speed$v S.$ Same$advantages$as$previous$bullet.$ These are the main variants in the literature

Generalized$Cosmic$Ray$ Hydrodynamics$(GCRH)$ Account$for$non=cosmic$ray$sources$of$waves.$ MHD$turbulence,$Boldyrev$ group$ Generalize$F=P$equa@on$to$include$waves$ traveling$in$both$direc@ons.$

From$Fokker=Planck$Equa@on$ Composite$streaming$velocity$ Pressure$gradient$force$is$unchanged$

Wave$Evolu@on$Equa@ons$ cosmic$ray$$ driving/damping$ extrinsic$ driver$

Balance$Driving$&$Damping$ Simple model This is easily solved

Transport$Velocity$ w#)>#0#when#external#driving#dominates## w#)>#v A #when#cosmic#ray#driving#dominates# # Cosmic#ray#hea9ng#is#reduced#but# compensated#by#turbulent#damping#

Extrinsic$Turbulence$Model$ Advect$cosmic$rays$at$ the$fluid$speed$v.$ Neglect$$cosmic$ray$ hea@ng.$ Retain$pressure$ gradient$force.$ $ $All$hold$in$the$limit$of$ strongly$driven,$balanced$ turbulence.$ But,$Alfven$turbulence$ produces$anisotropic,$ field$aligned$diffusion.$ Isotropic$diffusion$is$ produced$by$a$small$ scale,$stochas@c$field.$

Beyond$Alfven$Waves$ $High$β For β=$p G /P M $>>$1$ Affects$waves$which$ scafer$cosmic$rays$with$ µ$>$µ c$ ω~ω ci /β 1/2$ Demands$very$weak$ fields,$e.g$b$<$$10 =12 G$in$ galaxy$clusters.$ Enforces sub-alfvenic streaming

Nonresonant Instabilities When U cr /U B > c/v D there is a new, nonresonant instability driven by the electron current that compensates the cosmic ray current. Conditions are met at shocks, and possibly in young galaxies. Evereyy$&$EZ$2010$

Diffusive+Shock+Accelera/on+ Par/cles+are+scaVered+back+and+ forth+across+the+shock+by+ waves+and+turbulence+they+ generate+themselves,+resul/ng+ in+a+power+law+spectrum+that+ depends+on+the+shock++ compression+ra/o.+ Maximum+E+is+set+ by++shock+evolu/on+ &+geometry.+ E "2$ for$strong$ shock$

Rapid Growth to Nonlinear Amplitude resonant$ 10 3 nonresonant PIC simulation showing magnetic field growth in a shock layer. 10 4 Ω i rad s 1 10 5 10 6 10 7 10 2 10 1 1 10 1 10 2 10 3 10 4 kr cr Linear growth rates (Zweibel & Everett 2010) Riquelme & Spitkovsky 2010

Beyond$Alfven$Speed$ Resonant$instabili@es$enforce$sub=Alfvenic$ streaming$&$require$extremely$weak$fields.$ Nonresonant$instabili@es$require$large$cosmic$ ray$fluxes$$ Growth$rates$comparable$to$frequency$require$ nonstandard$treatments$ Could$be$very$interes@ng$in$weak$field$situa@ons.$

Summary$&$Prospects$ Cosmic$rays$appear$in$diffuse$plasmas$ everywhere,$in$defiance$of$thermodynamics.$ They$exchange$momentum$and$energy$with$ the$background$medium,$mediated$by$ magne@c$fields.$ Advances$in$observa@on,$computa@on,$&$ experiment$make$this$a$wonderful$@me$to$ study$their$accelera@on,$transport,$and$ feedback.$