Fluxes of Galactic Cosmic Rays

Similar documents
Fluxes of Galactic Cosmic Rays

Fluxes of Galactic Cosmic Rays

Search for Antiparticles in Cosmic Rays in Space and the Earth s Atmosphere. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen University

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

Geomagnetic cutoff simulations for low-energy cosmic rays

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

Propagation in the Galaxy 2: electrons, positrons, antiprotons

PEBS - Positron Electron Balloon Spectrometer. Prof. Dr. Stefan Schael I. Physikalisches Institut B RWTH Aachen

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Indirect Search for Dark Matter with AMS-02

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon

Geomagnetic cutoff calculations for the interpretation of low-rigidity cosmic-ray antiparticle measurements

Cosmic Ray Physics with the ARGO-YBJ experiment

Measurement of CR anisotropies with the AMS detector on the ISS

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009

The PAMELA Satellite Experiment: An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays

SUPPLEMENTARY INFORMATION

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

PAMELA satellite: fragmentation in the instrument

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

Transition Radiation Detector for GlueX

Antiproton Flux and Antiproton-to-Proton Flux Ratio in Primary Cosmic Rays Measured with AMS on the Space Station

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

P A M E L A Payload for Antimatter / Matter Exploration and Light-nuclei Astrophysics

Hadronic Interaction Studies with ARGO-YBJ

Results from the PAMELA Space Experiment

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

MoonCal An electromagnetic calorimeter on the lunar surface. R.Battiston, M.T.Brunetti, F. Cervelli, C.Fidani, F.Pilo

GeV to Multi-TeV Cosmic Rays: AMS-02 Status and Future Prospects

Theoretical Assessment of Aircrew Exposure to Galactic Cosmic Radiation Using the FLUKA Monte Carlo Code

Towards Direction Dependent Fluxes With AMS-02

Building a Tracking Detector for the P2 Experiment

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

Abstract: J. Urbar [1], J. Scheirich [2], J. Jakubek [3] MEDIPIX CR tracking device flown on ESA BEXUS-7 stratospheric balloon flight

arxiv: v1 [physics.ins-det] 3 Feb 2014

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

ISAPP Gran Sasso June 28-July 9, Observations of Cosmic Rays

PAMELA Five Years of Cosmic Ray Observation from Space

Measurement of the CR e+/e- ratio with ground-based instruments

THE AMS RICH COUNTER

arxiv: v1 [astro-ph.he] 2 Jul 2009

Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ

PoS(ICRC2015)432. Simulation Study On High Energy Electron and Gamma-ray Detection With the Newly Upgraded Tibet ASgamma Experiment

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

Atmospheric Neutrinos and Neutrino Oscillations

Indirect Dark Matter Detection

Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

The Alpha Magnetic Spectrometer on the International Space Station

Calibration of the AGILE Gamma Ray Imaging Detector

arxiv:astro-ph/ v3 21 Apr 2007

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

GLAST Large Area Telescope:

Balloon-borne experiment for observation of sub-mev/mev gamma-rays from Crab Nebula using an Electron Tracking Compton Camera

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Experimental review of high-energy e e + and p p spectra

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Dark matter in split extended supersymmetry

Simulation for Proton Charge Radius (PRad) Experiment at Jefferson Lab1 Li Ye Mississippi State University For the PRad Collaboration The Proton Charg

DIN EN : (E)

AMS : A Cosmic Ray Observatory

IceCube: Ultra-high Energy Neutrinos

arxiv:hep-ph/ v1 5 Apr 1993

Diffuse TeV emission from the Cygnus region

Cosmic Antimatter. Stéphane. Coutu The Pennsylvania State University. 3 rd. Astrophysics Arequipa,, Peru August 28-29, 29, 2008

The Fermi Gamma-ray Space Telescope

SUPPLEMENTARY INFORMATION

Galactic cosmic rays propagation

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space

Cosmic Rays and the need for heavy payloads

David Gascón. Daniel Peralta. Universitat de Barcelona, ECM department. E Diagonal 647 (Barcelona) IFAE, Universitat Aut onoma de Barcelona

Lecture 3. lecture slides are at:

Particle accelerators

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

arxiv: v2 [hep-ph] 23 Jun 2016

THE ELECTROMAGNETIC CALORIMETER OF THE AMS-02 EXPERIMENT

What is known about Dark Matter?

Measurement of a Cosmic-ray Electron Spectrum with VERITAS

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Primary Cosmic Rays : what are we learning from AMS

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

CRaTER Science Requirements

Validation of Geant4 Physics Models Using Collision Data from the LHC

Monte Carlo Studies for a Future Instrument. Stephen Fegan Vladimir Vassiliev UCLA

The High-Energy Interstellar Medium

Study of Solar Gamma Rays basing on Geant4 code

Questions 1pc = 3 ly = km

The Latest Results from AMS on the International Space Station

Transcription:

Fluxes of Galactic Cosmic Rays sr s m - GeV Flux solar Modulation: Φ = 550 MV proton helium positron electron antiproton photon galdef 50080/60080 (γ) Status of Cosmic Ray Measurements: good agreement between cosmic ray propagation/production model and data in background fluxes (Ô,, «, other heavy nuclei) general model works! - - - AMS-0 electrons AMS-0 positrons HEAT 9/5 positrons AMS-0 protons AMS-0 helium kinetic Energy [GeV] ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº¾»½

Fluxes of Galactic Cosmic Rays sr s m - GeV Flux - - - solar Modulation: Φ = 550 MV AMS-0 electrons AMS-0 positrons HEAT 9/5 positrons AMS-0 protons AMS-0 helium proton helium positron electron antiproton photon kinetic Energy [GeV] galdef 50080/60080 (γ) Status of Cosmic Ray Measurements: good agreement between cosmic ray propagation/production model and data in background fluxes (Ô,, «, other heavy nuclei) general model works!, Ô, are sensitive to dark matter signals (annihilation) and fluxes/fractions show some unexplained features need precise measurement of fluxes up to high energies! ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº¾»½

Fluxes of Galactic Cosmic Rays sr s m - GeV Flux - - - solar Modulation: Φ = 550 MV AMS-0 electrons AMS-0 positrons HEAT 9/5 positrons AMS-0 protons AMS-0 helium proton helium positron electron antiproton photon kinetic Energy [GeV] galdef 50080/60080 (γ) Status of Cosmic Ray Measurements: good agreement between cosmic ray propagation/production model and data in background fluxes (Ô,, «, other heavy nuclei) general model works!, Ô, are sensitive to dark matter signals (annihilation) and fluxes/fractions show some unexplained features need precise measurement of fluxes up to high energies! µ Balloon Experiment: Investigate influence of atmosphere on flux measurements! ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº¾»½

Requirements for positron flux measurements total rejection is made up of the single rejections of the different subdetectors ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½ ÈÐÔ

Air shower in Earth s atmosphere ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Please notice...... following analysis is preliminary! Any suggestions and comments are very welcome! ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

PLANETOCOSMICS Simulation of the Earth s atmosphere and magnetic field with PLANETOCOSMICS (developed by L. Desorgher, Uni. Bern http://cosray.unibe.ch/ laurent/planetocosmics) general properties: based on GEANT atmospheric model: NRLMSISE¼¼ magnetic field: IGRF ¾¼¼ magnetosphere: Tsyganenko ¾¼¼½ ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

PLANETOCOSMICS Simulation of the Earth s atmosphere and magnetic field with PLANETOCOSMICS (developed by L. Desorgher, Uni. Bern http://cosray.unibe.ch/ laurent/planetocosmics) general properties: based on GEANT atmospheric model: NRLMSISE¼¼ magnetic field: IGRF ¾¼¼ magnetosphere: Tsyganenko ¾¼¼½ properties of this simulation: input spectra are the fluxes of the conventional Galprop model (galdef 50080 astro-ph/0065) detection plane ¼ in km altitude particle gun ¼¼ in km height over the geographic South Pole starting positions randomly distributed in cone over detector (¼ radius m), (¼ height m) (dimensions of PEBS) only primaries that can hit the detector are started but all particles in ¼ the km shell around the earth are detected to compensate for scattered particles from cosmic rays outside of the starting cone ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Properties of Earth s Atmosphere (NRLMSISE¼¼) kinetic energy/temperature of atmosphere (ideal gas) ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Properties of Earth s Atmosphere (NRLMSISE¼¼) Mass [%] N He O H Ar - - - -5-6 -7 0 0 00 00 00 500 Altitude [km] density of atmosphere composition of atmosphere ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Properties of Earth s Atmosphere (NRLMSISE¼¼) Mass [%] N He O H Ar - - - -5-6 -7 0 0 00 00 00 500 Altitude [km] density of atmosphere composition of atmosphere ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Distribution of particle starting positions 90+latitude [deg].5.5 000 500 000 500 00 0.5 500 0 0 50 0 50 00 50 00 50 longitude [deg] 0 geographic distribution of starting positions starting position is decribed by angles and an altitude ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Distribution of particle starting positions entries [#] 5 0 5 5 0 5 0 zenith [deg] zenith angle entries [#] 5 0 50 0 50 00 50 00 50 azimuth [deg] starting position is decribed by angles and an altitude azimuth angle ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Verification of atmospheric physics model (counts for ¼ days with acceptance ¼½ m ¾ sr and without detector effiencies) sr s m - ] Flux [GeV - - - -5-6 -7 µ +, 0 km µ -, 0 km π +, 0 km π -, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Verification of atmospheric physics model (counts for ¼ days with acceptance ¼½ m ¾ sr and without detector effiencies) sr s m - ] Flux [GeV - - - -5-6 -7 µ +, 0 km µ -, 0 km π +, 0 km π -, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV atmosphere for a final verification µ... to be done! looks promising, but need comparison with measured - and -fluxes in ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº»½

Influence of altitude to particle flux (mean values from ½ - ¼¼ GeV) (mean values from ½ - ¼¼ GeV) cosmic rays starting from ¼ km altitude! Positrons have major contributions by secondaries from other primary galactic Protons don t have such an additional source. Atmosphere is electromagnetically more effective than hadronically. ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¼»½

Influence of altitude to particle flux (mean values from ½ - ¼¼ GeV) (mean values from ½ - ¼¼ GeV) cosmic rays starting from ¼ km altitude! Positrons have major contributions by secondaries from other primary galactic Protons don t have such an additional source. Atmosphere is electromagnetically more effective than hadronically. Maximum height for a balloon is ¼ km. µ Seems to be ok! ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¼»½ ÈÐÔ

Positron fluxes in ¼ km sr s m - ] Flux [GeV - - - -5-6 -7 + primary e + total e, 0 km + sec. e, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV primaries scaled to input fluxes counts ¼ for days with ¼½ acceptance m sr, but without detector effiencies ¾ ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½½»½

Positron fluxes in ¼ km sr s m - ] Flux [GeV - - - -5-6 -7 + primary e + total e, 0 km + sec. e, 0 km Energy [GeV] 8 5 9 7 6 ] Counts [GeV Ratio.6.. 0.8 0.6 0. 0. total primary + e, 0 km primary on alt. primary + e, 0 km Energy [GeV] primaries scaled to input fluxes counts ¼ for days with ¼½ acceptance m sr, but without detector effiencies ¾ just a few percentage loss of primaries to lower energies and also just a few additional percentage of secondaries from other cosmic rays ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½½»½

Positron fluxes in ¼ km corrections PEBS prim Æ Æ PEBS atmo sec PEBS Ætot Ô Æ Ê Ô (all quantities are energy dependent) Æ tot PEBS number of particles (GalProp, PLANETOCOSMICS): PEBS, prim, sec Æ Æ, tot Æ Æ, tot Æ Ô detection efficiency (detector simulation): PEBS ¼ ½¼ GeV, with TRD inside (lower acceptance) ½¼ GeV meaning of quantities: proton Rejection (detector simulation): ½¼ for all energies ¼ loss of particles in atmosphere (PLANETOCOSMICS): atmo energy dependent tracker misidentification (detector simulation): Ê Ô PEBS energy dependent ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¾»½

Positron fluxes in ¼ km corrections PEBS prim Æ Æ PEBS atmo sec PEBS Ætot Ô Æ Ê Ô (all quantities are energy dependent) Æ tot PEBS number of particles (GalProp, PLANETOCOSMICS): PEBS, prim, sec Æ Æ, tot Æ Æ, tot Æ Ô detection efficiency (detector simulation): PEBS ¼ ½¼ GeV, with TRD inside (lower acceptance) ½¼ GeV meaning of quantities: proton Rejection (detector simulation): ½¼ for all energies ¼ loss of particles in atmosphere (PLANETOCOSMICS): atmo energy dependent tracker misidentification (detector simulation): Ê Ô error estimates: PEBS energy dependent statistical errors: Æ...... systematic errors for atmospheric physics: % systematic errors for detector properties: % ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¾»½

Positron fluxes in ¼ km corrections PEBS prim Æ Æ PEBS Rejections: ToF atmo sec PEBS Ætot Ô Æ Ê Ô (all quantities are energy dependent) Æ tot PEBS Proton rejections of ToF with Ø ½¼¼ ps resolution (important for low energy range Ô-spectrum) ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¾»½

Positron fluxes in ¼ km corrections PEBS prim Æ Æ PEBS atmo sec PEBS Ætot Ô Æ Ê Ô (all quantities are energy dependent) Æ tot PEBS Rejections: ToF TRD Proton Rejection Factor 50% e-efficiency 70% e-efficiency 90% e-efficiency 0 50 0 50 00 50 E Beam / GeV Proton rejections of ToF with Ø ½¼¼ ps resolution (important for low energy range Ô-spectrum) Proton rejections of AMS0 TRD for 8 layers radiator and straw tubes with test beam data (important for low energy range) ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¾»½

Positron fluxes in ¼ km corrections PEBS prim Æ Æ PEBS atmo sec PEBS Ætot Ô Æ Ê Ô (all quantities are energy dependent) Æ tot PEBS Rejections: ToF TRD Tracker Proton Rejection Factor 50% e-efficiency 70% e-efficiency 90% e-efficiency Proton rejections of ToF with Ø ½¼¼ ps resolution (important for low energy range Ô-spectrum) 0 50 0 50 00 50 E Beam / GeV Proton rejections of AMS0 TRD for 8 layers radiator and straw tubes with test beam data (important for low energy range) misidentification prob. of tracker for with the resolution: Ô ¼ ± GeV ½¼ ± Ô ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¾»½

Positron fluxes in ¼ km corrections PEBS prim Æ Æ PEBS atmo sec PEBS Ætot Ô Æ Ê Ô (all quantities are energy dependent) Æ tot PEBS [ Æ tot Ê Ætot Ê ] Rejections: Proton rejections of ECal and Tracker presentation H. Gast not yet: consider -/-efficiencies of detector (should be a small effect) general: use energy dependent rejections (to be done... ) ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½¾»½

Total counts of - and -fluxes (Æ PEBS ) ] [Gev PEBS N 7 6 5 + total e, PEBS, 0 days - total e, PEBS, 0 days Energy [GeV] counts with detector efficiencies and atmospheric loss! days PEBS with acceptance ¼½ m sr ¾ ¼ ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Electron and Positron fluxes with ¼ days PEBS sr s m - ] Flux [GeV + e, PEBS, 0 days - e, PEBS, 0 days - - - -5-6 AMS-0 electrons AMS-0 positrons HEAT 9/5 positrons -7 Energy [GeV] uncertanties in atmospheric correction all corrections applied large error bars mainly from µ room for improvement! ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Electron and Positron fluxes with ¼ days PEBS sr s m - ] Flux [GeV - + e, PEBS, 0 days - e, PEBS, 0 days - e + e + +e Positron Fraction PEBS, 0 days HEAT AMS0 conv. Galprop - - -5-6 AMS-0 electrons AMS-0 positrons HEAT 9/5 positrons - -7 Energy [GeV] Energy [GeV] uncertanties in atmospheric correction all corrections applied large error bars mainly from µ room for improvement! assumptions for and : same behaviour in atmosphere same rejection same tracker resolution smaller errors (atmo cancels in fraction) µ ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Electron and Positron fluxes with ¼ days PEBS sr s m - ] Flux [GeV - + e, PEBS, 0 days - e, PEBS, 0 days - e + e + +e Positron Fraction PEBS, 0 days HEAT AMS0 conv. Galprop - - -5-6 AMS-0 electrons AMS-0 positrons HEAT 9/5 positrons - -7 Energy [GeV] Energy [GeV] uncertanties in atmospheric correction all corrections applied large error bars mainly from µ room for improvement! discrepancy at lower energies due to different solar modulations PEBS errors are dominated by statistics at higher energies this PEBS has ¾ statistics of HEAT ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Electron and Positron fluxes with ¼ days PEBS sr s m - ] Flux [GeV - + e, PEBS, 0 days - e, PEBS, 0 days - e + e + +e Positron Fraction m / = 500 GeV, m = 00 GeV 0 tanβ= 5, µ>0, A = 0 0 DM signal boost factor: 50.0 PEBS, 0 days HEAT AMS0 Galprop + DM DM, DarkSUSY conv. Galprop - - -5-6 AMS-0 electrons AMS-0 positrons HEAT 9/5 positrons - -7 Energy [GeV] Energy [GeV] uncertanties in atmospheric correction all corrections applied large error bars mainly from µ room for improvement! this dark matter signal is distinguishable with ¼ a days PEBS flight in ¼ km altitude! ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Antiproton and Photon fluxes in ¼ km (counts for ¼ days with acceptance ¼½ m ¾ sr and without detector effiencies) sr s m - ] Flux [GeV - - - -5-6 -7 primary p total p, 0 km sec. p, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV in the same order as for positrons! Ô MC statistics for secondaries are low, but influence of atmosphere seems to be ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Antiproton and Photon fluxes in ¼ km (counts for ¼ days with acceptance ¼½ m ¾ sr and without detector effiencies) sr s m - ] Flux [GeV - - - -5-6 -7 primary p total p, 0 km sec. p, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV good Ecal and time let s see... acceptance is lower than BESS s, but can maybe compensated with ToF, ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Antiproton and Photon fluxes in ¼ km (counts for ¼ days with acceptance ¼½ m ¾ sr and without detector effiencies) sr s m - ] Flux [GeV - - - -5-6 -7 primary p total p, 0 km sec. p, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV sr s m - ] Flux [GeV - - - -5-6 -7 primary γ total γ, 0 km sec. γ, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV good Ecal and time let s see... acceptance is lower than BESS s, but can maybe compensated with ToF, diffuse s, averaged over all directions in the galaxy ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Antiproton and Photon fluxes in ¼ km (counts for ¼ days with acceptance ¼½ m ¾ sr and without detector effiencies) sr s m - ] Flux [GeV - - - -5-6 -7 primary p total p, 0 km sec. p, 0 km Energy [GeV] 5 9 8 7 6 ] Counts [GeV good Ecal and time let s see... acceptance is lower than BESS s, but can maybe compensated with ToF, diffuse s, averaged over all directions in the galaxy too many secondaries, flux measurement not possible! ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Total particle rates Total Particle Rate [Hz] - Minimum Energy [GeV] threshold within ½µs PEBS ¼ in km with ¼½ acceptance m sr minimum energy from ToF as trigger ¾ allows particle rates of Ç ½¼¼µ khz ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Total particle rates Total Particle Rate [Hz] Are there more particles? but maybe atmosphere works as shield low energetic electrons ( Ç ½¼¼µ khz) reason for AMS LEPS (few % ¼ ) solar protons (low energies, but many) particles from the radiation belts - Minimum Energy [GeV] anomalous cosmic rays photons from point sources needs more investigation! µ PEBS trigger has to be fitted to the µ estimated count rate! threshold within ½µs PEBS ¼ in km with ¼½ acceptance m sr minimum energy from ToF as trigger ¾ allows particle rates of Ç ½¼¼µ khz ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Summary & Outlook What have been done: Pole in ¼ km altitude with PEBS simulation of the positron fraction measurement on the South (ca. ½¼ ¾ statistics of HEAT) error estimation including the correction of the main uncertainties good measurement of positron fraction possible ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½

Summary & Outlook What have been done: Pole in ¼ km altitude with PEBS simulation of the positron fraction measurement on the South (ca. ½¼ ¾ statistics of HEAT) error estimation including the correction of the main uncertainties good measurement of positron fraction possible What should be done: use more precise properties of PEBS detector produce more Monte Carlos higher statistics investigate detectability of Ô dark matter signal better comparisons with atmospheric fluxes ÈÐÔ ÚÓÒ ÓØÒÑ ÈË ÏÓÖ ÓÔ ÅÝ ¾¼¼ ß Ó Ñ ÊÝ Ò Ø ØÑÓ ÔÖ ¾»»¾¼¼ ß Ôº½»½