DRAFT: CLOUD VELOCITY ESTIMATION FROM AN ARRAY OF SOLAR RADIATION MEASUREMENTS

Similar documents
CLOUD VELOCITY ESTIMATION FROM AN ARRAY OF SOLAR RADIATION MEASUREMENTS

Short-term Solar Forecasting

Satellite-to-Irradiance Modeling A New Version of the SUNY Model

AN INTERNATIONAL SOLAR IRRADIANCE DATA INGEST SYSTEM FOR FORECASTING SOLAR POWER AND AGRICULTURAL CROP YIELDS

CARLOS F. M. COIMBRA (PI) HUGO T. C. PEDRO (CO-PI)

COMPARISON OF CLEAR-SKY MODELS FOR EVALUATING SOLAR FORECASTING SKILL

Evaluating Satellite Derived and Measured Irradiance Accuracy for PV Resource Management in the California Independent System Operator Control Area

Uncertainty of satellite-based solar resource data

Bankable Solar Resource Data for Energy Projects. Riaan Meyer, GeoSUN Africa, South Africa Marcel Suri, GeoModel Solar, Slovakia

SOLAR POWER FORECASTING BASED ON NUMERICAL WEATHER PREDICTION, SATELLITE DATA, AND POWER MEASUREMENTS

A SIMPLE CLOUD SIMULATOR FOR INVESTIGATING THE CORRELATION SCALING COEFFICIENT USED IN THE WAVELET VARIABILITY MODEL (WVM)

The Center for Renewable Resource Integration at UC San Diego

COMPARISON OF CLEAR-SKY MODELS FOR EVALUATING SOLAR FORECASTING SKILL

OUTPUTS AND ERROR INDICATORS FOR SOLAR FORECASTING MODELS

2014 HIGHLIGHTS. SHC Task 46 is a five-year collaborative project with the IEA SolarPACES Programme and the IEA Photovoltaic Power Systems Programme.

Solar Resource Mapping in South Africa

Current Status of COMS AMV in NMSC/KMA

IMPROVED MODEL FOR FORECASTING GLOBAL SOLAR IRRADIANCE DURING SUNNY AND CLOUDY DAYS. Bogdan-Gabriel Burduhos, Mircea Neagoe *

Short term forecasting of solar radiation based on satellite data

Post-processing of solar irradiance forecasts from WRF Model at Reunion Island

DNICast Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies

ENHANCING THE GEOGRAPHICAL AND TIME RESOLUTION OF NASA SSE TIME SERIES USING MICROSTRUCTURE PATTERNING

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

SDG&E Meteorology. EDO Major Projects. Electric Distribution Operations

Importance of Numerical Weather Prediction in Variable Renewable Energy Forecast

An Objective Algorithm for the Identification of Convective Tropical Cloud Clusters in Geostationary Infrared Imagery. Why?

VALIDATION OF MSG DERIVED SURFACE INCOMING GLOBAL SHORT-WAVE RADIATION PRODUCTS OVER BELGIUM

An Operational Solar Forecast Model For PV Fleet Simulation. Richard Perez & Skip Dise Jim Schlemmer Sergey Kivalov Karl Hemker, Jr.

Remote Sensing and Sensor Networks:

Towards a Bankable Solar Resource

SUNY Satellite-to-Solar Irradiance Model Improvements

STATISTICAL ANALYSIS ON SEVERE CONVECTIVE WEATHER COMBINING SATELLITE, CONVENTIONAL OBSERVATION AND NCEP DATA

Improving the accuracy of solar irradiance forecasts based on Numerical Weather Prediction

Mr Riaan Meyer On behalf of Centre for Renewable and Sustainable Energy Studies University of Stellenbosch

FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS

Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB)

Direct Normal Radiation from Global Radiation for Indian Stations

SolarGIS: Online Access to High-Resolution Global Database of Direct Normal Irradiance

Developing a Guide for Non-experts to Determine the Most Appropriate Use of Solar Energy Resource Information

Multi-Model Ensemble for day ahead PV power forecasting improvement

A Typical Meteorological Year for Energy Simulations in Hamilton, New Zealand

An Adaptive Multi-Modeling Approach to Solar Nowcasting

Short- term solar forecas/ng with sta/s/cal models and combina/on of models

8-km Historical Datasets for FPA

The document was not produced by the CAISO and therefore does not necessarily reflect its views or opinion.

GENERATION OF HIMAWARI-8 AMVs USING THE FUTURE MTG AMV PROCESSOR

Conference Proceedings

Importance of Input Data and Uncertainty Associated with Tuning Satellite to Ground Solar Irradiation

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES

AN ARTIFICIAL NEURAL NETWORK BASED APPROACH FOR ESTIMATING DIRECT NORMAL, DIFFUSE HORIZONTAL AND GLOBAL HORIZONTAL IRRADIANCES USING SATELLITE IMAGES

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS

UC San Diego UC San Diego Electronic Theses and Dissertations

Characterization of the solar irradiation field for the Trentino region in the Alps

Global Solar Dataset for PV Prospecting. Gwendalyn Bender Vaisala, Solar Offering Manager for 3TIER Assessment Services

5.1 Use of the Consensus Reference Concept for Testing Radiosondes. Joe Facundo and Jim Fitzgibbon, Office of Operational Systems,

Soleksat. a flexible solar irradiance forecasting tool using satellite images and geographic web-services

A SOLAR AND WIND INTEGRATED FORECAST TOOL (SWIFT) DESIGNED FOR THE MANAGEMENT OF RENEWABLE ENERGY VARIABILITY ON HAWAIIAN GRID SYSTEMS

SHORT TERM DNI FORECASTING WITH SKY IMAGING TECHNIQUES

Sky Cover: Shining Light on a Gloomy Problem

SOLAR RADIATION ESTIMATION AND PREDICTION USING MEASURED AND PREDICTED AEROSOL OPTICAL DEPTH

The Properties of Convective Clouds Over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones

Solar Radiation Measurements and Model Calculations at Inclined Surfaces

3TIER Global Solar Dataset: Methodology and Validation

Introducing Atmospheric Motion Vectors Derived from the GOES-16 Advanced Baseline Imager (ABI)

APPENDIX G-7 METEROLOGICAL DATA

Urban Forest Effects-Dry Deposition (UFORE D) Model Enhancements. Satoshi Hirabayashi

Sun to Market Solutions

Creation of a 30 years-long high resolution homogenized solar radiation data set over the

A New Numerical Weather Prediction Approach to the NDFD's Sky Cover Grid

ASSESMENT OF THE SEVERE WEATHER ENVIROMENT IN NORTH AMERICA SIMULATED BY A GLOBAL CLIMATE MODEL

Short and medium term solar irradiance and power forecasting given high penetration and a tropical environment

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

P Hurricane Danielle Tropical Cyclogenesis Forecasting Study Using the NCAR Advanced Research WRF Model

PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN

SHORT-RANGE SOLAR RADIATION FORECASTS IN SUPPORT OF SMART GRID TECHNOLGY

Cloud base height from sky imager and cloud speed sensor

Temporal downscaling of irradiance data via Hidden Markov Models on Wavelet coefficients: Application to California Solar Initiative data

Very-short term solar power generation forecasting based on trend-additive and seasonal-multiplicative smoothing methodology

Understanding the Microphysical Properties of Developing Cloud Clusters during TCS-08

Solar Generation Prediction using the ARMA Model in a Laboratory-level Micro-grid

Estimation of Hourly Global Solar Radiation for Composite Climate

COMPARING PERFORMANCE OF SOLARGIS AND SUNY SATELLITE MODELS USING MONTHLY AND DAILY AEROSOL DATA

AMVs in the ECMWF system:

Solutions Manual to Exercises for Weather & Climate, 8th ed. Appendix A Dimensions and Units 60 Appendix B Earth Measures 62 Appendix C GeoClock 63

A methodology for DNI forecasting using NWP models and aerosol load forecasts

Probabilistic forecasting of solar radiation

David John Gagne II, NCAR

Optimizing the Photovoltaic Solar Energy Capture on Sunny and Cloudy Days Using a Solar Tracking System

TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM

Satellite-based solar irradiance assessment and forecasting in tropical insular areas

Spatiotemporal Analysis of Solar Radiation for Sustainable Research in the Presence of Uncertain Measurements

Examination of Tropical Cyclogenesis using the High Temporal and Spatial Resolution JRA-25 Dataset

Recent Advances in the Processing, Targeting and Data Assimilation Applications of Satellite-Derived Atmospheric Motion Vectors (AMVs)

Shadow camera system for the validation of nowcasted plant-size irradiance maps

Solar Radiation and Solar Programs. Training Consulting Engineering Publications GSES P/L

A New Predictive Solar Radiation Numerical Model

p = ρrt p = ρr d = T( q v ) dp dz = ρg

Using satellite-based remotely-sensed data to determine tropical cyclone size and structure characteristics

Development of Methodology and Tools for Determining the Impact of Cloud-Cover on Satellite Sensors

Transcription:

Proceedings of the ASME 212 6th International Conference on Energy Sustainability & 1th Fuel Cell Science, Engineering and Technology Conference ES/FUELL 212 August 1-18, 212, San Diego, California, USA ESFuelCell212-91369 DRAFT: CLOUD VELOCITY ESTIMATION FROM AN ARRAY OF SOLAR RADIATION MEASUREMENTS Juan L. Bosch Yuehai Zheng Jan Kleissl Department of Mechanical and Aerospace Engineering Center for Renewable Resources and Integration University of California, San Diego La Jolla, California 9293-411 Email: jlbosch@ucsd.edu, y6zheng@ucsd.edu, jkleissl@ucsd.edu ABSTRACT Spatio-temporal variability of solar radiation is the main variable affecting the photovoltaic power feed-in to the grid. Clouds are the main source of such variability and their velocity is a principal input to most short-term forecast models. The main goal in this study is to estimate cloud speed using radiometric data using measurements from 8 sensors located at the UC San Diego Solar Energy test bed. Two different methods were developed to estimate the cloud speed based on the correlation between the signals received at different sensors. Our analysis showed good agreement between both methods. Additional measurements from nearby METAR and radiosonde stations also show comparable results. Both methods require high variability in the input radiation. INTRODUCTION In a high PV penetration scenario, one of the most important problems to solve is the variability of the power input to the grid. Spatio-temporal variability of solar radiation is the main variable affecting the photovoltaic power feed-in to the grid. Clouds are the main source of such variability and their velocity is a principal input to most short-term forecast models. A common approach in the cloud motion vector estimation is to use satellite imagery [1 3]. Satellite derived motion vectors have been used also to improve the results from numerical models, Velden et al (1998) showed that the GOES multispectral wind information had a significant positive impact on the numerical model derived forecasts for tropical cyclone tracks [4]. Bedka and Mecikalski (2) improved the Velden et al. (1998) algorithm to derive motion vectors including both synoptic-scale and mesoscale flows, such mesoscale flows are important in applications that monitor the rapid evolution of (convective) clouds in nearreal time []. A recent effort has been made to define the forecast horizon where the satellite based motion vector outperforms the NWP models [6, 7]. In Miller et al. (211), it is pointed out the inability of the NWP technique to obtain accurate results in the first hours of forecast due to the spin-up time required for this models [6], while Perez et al. (21) conclude that for forecasts up to hours ahead satellite-derived cloud motion-based forecasting leads to a significant improvement over NDFD forecasts. For 1 h forecasts the results from NDFD and satellite-derived cloud motion are found to be on par, probably due to satellites navigation and parallax uncertainties, which tend to mitigate for longer times [7]. This 1 hour gap of reliable cloud motion vectors for shortterm forecasting could be filled by utilizing ground measurements of solar irradiance at the site of interest. The main goal in Address all correspondence to this author. 1

TABLE 1. COORDINATES AND MEASURED VARIABLES FOR THE UTILIZED DATABASES. Dataset UCSD-SETB ISH FIGURE 1. PYRANOMETERS DISTRIBUTION. this study is to estimate cloud speed using radiometric data, with an experimental setup consisting of eight silicon pyranometers with an acquisition frequency of 2Hz, deployed in a semicircular shape at the UC San Diego Solar Energy test bed. Two different methods were developed based on the correlation between the signals received at the different sensors. The basic premise is that for a pair of sensors aligned with the cloud direction, their irradiances will be very similar, but with a time lag. Once the lag has been determined, cloud speed can be calculated. Since cloud direction is variable several pairs of sensors covering all the possible directions have to be set up. The most correlated pair is assumed to be in the direction of the cloud motion. An alternative method is proposed using a reduced set of three sensors, which calculates the speed and direction of the clouds assuming a certain shape for the shadow edges passing through the array. Our analysis showed good agreement between both methods. Additional measurements from nearby METAR and radiosonde stations also show comparable results. Both methods require high variability in the input radiation; cloud speed of an overcast cloud layer or the atmospheric velocity in clear skies cannot be obtained. DATA In this study we have used Global Horizontal Irradiance (GHI) measured at 8 pyranometers model Li-2SZ with an acquisition frequency of 2Hz. The sensors were deployed in a semicircular shape with a radius r of 6m as shown in Fig. 1, at the UCSD Solar Energy Test Bed (UCSD-SETB). In addition, in the validation process we used radiosonde data from the Integrated Global Radiosonde Archive () [8], and METAR data collected from a nearby station (Montgomery Field) extracted from the Integrated Surface Hourly (ISH) Data [9], archived at the National Climatic Data Center (NCDC). The radiosonde data include pressure, temperature, geopotential height, dewpoint depression, wind direction, and wind speed at standard, surface, tropopause, and significant levels. Table 1 shows the main characteristics of the different data sets used in this work. Latitude [ o ] 32.88 32.8 32.817 Longitude [ o ] -117.24-117.12-117.139 Altitude [m] 131 132 129 Variables GHI Radiosonde METAR Frequency 2 s 1 2 day 1 1 h 1 FIGURE 2. SIMPLE CASE WITH 2 SENSORS. METHODS Two different methods were developed to estimate the cloud speed, based on the correlation between the signals received at the different sensors. Most Correlated Pair Method () The basic premise is that for a pair of sensors S a and S b aligned with the cloud motion, separated a distance D, the irradiances I a and I b will be very similar, but with a time lag t ab as shown in Fig. 2. Once the lag has been determined (e.g. analyzing the signal cross correlation), cloud speed can be calculated as v = D/t ab (1) method uses the whole set of sensors, and is based 2

direction is given by either the lines NC n, C e E or the motion vector. Equations 2-12 show the steps taken to calculate the cloud speed and direction from the data. Using the cloud speed v v = [v cos α,v sin α], (2) the sensors position r o = [,] r N = [,D] r E = [D,] (3) and the edge equation at the origin FIGURE 3. CLOUD EDGE PASSING THROUGH THE ARRAY. on the simplified case depicted on Fig. 2, but without a prior assumption on the cloud direction. The 8 sensors are grouped in 7 pairs, where all the pairs share the central sensor. After calculating the cross correlation coefficients for the 7 pairs, the one with the highest correlation is assumed to be the most aligned with the cloud motion vector, and time lag and cloud speed are calculated using the most correlated pair. The main drawback of the method is the discrete nature of the results, which can be minimized by increasing the number of sensors. In this work, the selected interval was 3 degrees. This method is assumed to be the most accurate and will be used together with the measured METAR and radiosonde data for validation purposes. Linear Cloud Edge Method () method uses the sensors labeled as o, E and N on Fig. 1, where both distances on and oe are the same: D = 6m The most important assumption is that the cloud edge shape can be simplified as linear when reaching the sensors array. It is also assumed that the clouds has constant speed and direction during the time taken to pass over the three sensors. Figure 3 shows the main angles and distances used in this method, where β is the angle between the cloud edge and the x axis and v is the cloud speed. α stands for the angle between the cloud direction and the x axis. Due to the small scale of the sensor array if compared against the cloud dimensions, it is also assumed that the cloud is large enough to pass across the three sensors. Then we can calculate the time needed for the cloud to go from the sensor N to C n (t on ) and from C e to E (t oe ). In this case, the cloud motion y = tan(β) x (4) Basic kinematic equations can be used to reach the analytic expressions for t on and t oe. D tan β t oe = v (sin α cos α tan β) D t on = v ( sin α + cos α tan β) Reducing eqs. and 6 or applying the Low of sines to the triangles onc n, and oec e an expression for β can be easily obtained: () (6) β = tan 1 ( t oe t on ) (7) Processing the experimental data to obtain t on and t oe, will lead to three unknowns (β, α and v), and two equations -6. Or after replacing β from eq. 7, there still will be two unknowns and just one equation. t on sin α + t oe cos α = D/v (8) The additional information needed to solve eq. 8, can be obtained from a second cloud edge passing through the sensors, with same v and α, but with a different β (i.e. t on and t oe ). Because all directions are possible for β, this second measurement should be easy to get if the assumption of constant velocity is valid for the considered interval. 3

GHI [W m 2 s 1 ] 11 1 9 8 7 6 4 3 2 1 I o 1/2/211 1 11 12 13 14 1 16 FIGURE 4. GLOBAL HORIZONTAL IRRADIANCE FOR THE ORIGIN SENSOR RECORDED ON 1/2/211. Assigning the index 1 for the first pass, and 2 for the second leads to eq. 9 Geopotential Height [km] 3 3 2 2 1 1 Radiosonde SD (32.8N117.12W) 211/1/2 4:11 PST 16:23 PST t on1 sin α + t oe1 cos α = D/v t on2 sin α + t oe2 cos α = D/v, (9) S SW W NW N NE E SE S Wind direction that can be reduced to A sin α + B cos α =, (1) FIGURE. RADIOSONDE WIN DIRECTION. where A = t on2 t on1 B = t oe2 t oe1. (11) 3 3 Radiosonde SD (32.8N117.12W) 211/1/2 4:11 PST 16:23 PST Equation 11 can be solved as: α = tan 1 ( B/A) (12) Once α is obtained from eq. 12, v can be calculated using eq. 9. RESULTS The methods were tested for the dates 1/2/211 and 1/21/212. Figure 4 shows the measured GHI at the central sensor S o for the 2 th of October. Radiosonde and METAR measurements were used for both days, Fig. shows the two radiosonde profiles measured on October 2 th for the Wind direction d w at different geopotential heights, while Fig. 6 shows the same information for the Wind speed s w. The only measurement usable to compare the results obtained in this work is the one taken at 16:23 PST, which is the closest in time to the recorded irradiation values. Geopotential Height [km] 2 2 1 1 1 1 2 2 3 Wind speed [m/s] FIGURE 6. RADIOSONDE WIND SPEED. 4

GHI [W/m 2 ] Cloud direction [ o ] TABLE 2. UES. CLOUD SPEED AND DIRECTION MEASURED VAL- Radiosonde Date METAR h [m] d w [ o ] s w [m/s] Oct-2-211 16:23 PST 487 14 3.6 Oct-21-211 16:23 PST 172 29 4.6 9 8 7 6 4 3 2 1 1 GHI dir R 2 *1 GHI std*1 12.6 12.6 12.7 12.7 12.8 12.8 12.9 FIGURE 7. INFLUENCE OF GHI VARIABILITY ON THE CORRELATION. METAR data can be used to determine the cloud layer height h in order to select the right altitude in the wind profile that is being measured by the ground sensors. Table 2 shows the measured d w and s w values at 16:23 PST that can be used in this preliminary test for the models and. method results shows a high dependence with GHI variability, being unable to output a stable wind direction d w in complete overcast conditions. To illustrate this, Fig. 7 shows 2 minutes of October 21 st where outputs a random direction in the range [-18,18] for the first 1 minutes. In this interval both the maximum cross correlation factor and the standard deviation of GHI are low, but for the rest of the time interval d w becomes more stable around 6 o (i.e. 3 o ). Solar irradiation in this second interval shows larger variability and also an improved maximum cross correlation factor. After utilizing the method, a quality control process was applied to the resulting d w values to avoid poorly correlated data. The discarded data could lead to random directions as those Cloud direction [ o ] 1/2/211 GHI 36 31 27 22 18 13 9 4 1 11 12 13 14 1 16 FIGURE 8. CLOUD DIRECTION RESULTS COMPARISON FOR OCTOBER 2. Cloud direction [ o ] 18 13 9 4 1/21/211 GHI 4 9 13 18 1 11 12 13 14 1 16 FIGURE 9. CLOUD DIRECTION RESULTS COMPARISON FOR OCTOBER 21. shown in Fig. 7, and a restrictive threshold of R 2 >.6 was applied. Preliminary results showed that method provided similar results to but with larger standard deviations, and a threshold of 3 was used for the standard deviation of d w. Figure 8 shows the d w results obtained for October 2 th. The morning time presents overcast conditions and both methods fail to extract usable information from the irradiance measurements. In the interval [13-16] PST, both methods result in similar directions, also comparable to the 16:23 PST radiosonde data.

Cloud speed [m/s] 2 1 1 1/2/211 1 11 12 13 14 1 16 FIGURE 1. TOBER 2. Cloud speed [m/s] 2 1 1 CLOUD SPEED RESULTS COMPARISON FOR OC- 1/21/211 1 11 12 13 14 1 16 FIGURE 11. TOBER 21. CLOUD SPEED RESULTS COMPARISON FOR OC- In addition, Fig. 9 shows the obtained results for October 21 st. Different intervals along the day with a lower variability in the measured GHI (due to completely overcast situations or clear sky periods) do not allow enough points to pass the quality control tests for both methods. In this second day, a very different cloud direction has been also detected with comparable results for both methods and for the radiosonde measurement. Figures 1 and 11 show the results for the cloud speed s w. This results confirm those obtained for the cloud direction, with a similar output from both and methods and with a same range speed obtained from the database. CONCLUSIONS This preliminary study is very encouraging and shows satisfactory results for the proposed methodologies, also method could be used instead of to help reduce installation and maintenance costs of the sensors array. The used days showed almost opposite cloud directions, however, they were well characterized by both and methodologies. Cloud speed ranges were similar for both days, and also comparable to those measured by the 16:23 PST radiosondes. High variability in the GHI input is a main factor in the usability of both methods. Future works will try to further investigate the results under a wider variety of days. Different sensor arrays are also being investigated to optimize the number of directions covered with the minimum number of sensors. Different data acquisition frequencies and radius will also be analyzed. ACKNOWLEDGMENT This work was supported in part by the California Solar Initiative RD&D program. Jordan Liss assisted with data collection. Facilities personnel (David Purtell and Mildred Mcmilion) at RI- MAC Sports Facilities are gratefully acknowledged for hosting the experiment. REFERENCES [1] Leese, J. A., Novak, C. S., and Clark, B. B., 1971. An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation. Journal of Applied Meteorology, 1(1), pp. 118 132. [2] Hammer, A., Heinemann, D., Lorenz, E., and Lückehe, B., 1999. Short-term forecasting of solar radiation: a statistical approach using satellite data. Solar Energy, 67(13), pp. 139 1. [3] Lorenz, E., Hammer, A., and Heinemann, D., 24. Short term forecasting of solar radiation based on satellite data. Proc. ISES Europe Solar Congress EURO- SUN24,Freiburg, Germany, 24. [4] Velden, C. S., Olander, T. L., and Wanzong, S., 1998. The impact of multispectral goes-8 wind information on atlantic tropical cyclone track forecasts in 199. part i: Dataset methodology, description, and case analysis. Monthly Weather Review, 126(), pp. 122 1218. [] Bedka, K. M., and Mecikalski, J. R., 2. Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. Journal of Applied Meteorology, 44(11), pp. 1761 1772. [6] Miller, S. D., Combs, C. L., Sengupta, N., Chand, D., and Heidinger, A. K., 211. Toward evaluating short-term predictions of solar irradiance at the surface: persistence, satellite-based trajectory and numerical weather prediction models.. Proc. ASES Annual Conf.,Raleigh, NC, 211. [7] Perez, R., Kivalov, S., Schlemmer, J., Jr., K. H., Renné, D., and Hoff, T. E., 21. Validation of short and medium term operational solar radiation forecasts in the US. Solar Energy, 84(12), pp. 2161 2172. [8] Durre, I., Vose, R. S., and Wuertz, D. B., 26. Overview of the Integrated Global Radiosonde Archive. Journal of Climate, 19(1), pp. 3 68. [9] NCDC, 211. Integrated Surface Hourly (DSI- 3). National Climatic Data Center, NES- DIS, NOAA, U.S. Department of Commerce, http://ols.nndc.noaa.gov/plolstore/plsql/ olstore.prodspecific?prodnum=c32-tap-a1. 6