FEA CODE WITH MATLAB. Finite Element Analysis of an Arch ME 5657 FINITE ELEMENT METHOD. Submitted by: ALPAY BURAK DEMIRYUREK

Similar documents
Due Tuesday, September 21 st, 12:00 midnight

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

2 marks Questions and Answers

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

ME 475 Modal Analysis of a Tapered Beam

k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Chapter 11. Displacement Method of Analysis Slope Deflection Method

14. *14.8 CASTIGLIANO S THEOREM

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Lecture 8: Assembly of beam elements.

Multi Linear Elastic and Plastic Link in SAP2000

Stress analysis of a stepped bar

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS

ENGN 2340 Final Project Report. Optimization of Mechanical Isotropy of Soft Network Material

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

ME325 EXAM I (Sample)

DESIGN OF BEAMS AND SHAFTS

General elastic beam with an elastic foundation

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

1.050: Beam Elasticity (HW#9)

M.S Comprehensive Examination Analysis

Software Verification

Experimental Lab. Principles of Superposition

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

CHAPTER 5. Beam Theory

Ph.D. Preliminary Examination Analysis

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Due Monday, September 14 th, 12:00 midnight

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEAM DEFLECTION THE ELASTIC CURVE

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Chapter 5 Structural Elements: The truss & beam elements

ME FINITE ELEMENT ANALYSIS FORMULAS

EML4507 Finite Element Analysis and Design EXAM 1

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

ELASTODYNAMIC ANALYSIS OF FOUR BAR MECHANISM USING MATLAB AND ANSYS WB

Chapter 2: Deflections of Structures

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

The CR Formulation: BE Plane Beam

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

Homework 6: Energy methods, Implementing FEA.

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

Introduction to Structural Member Properties

BEAMS AND PLATES ANALYSIS

Supplement: Statically Indeterminate Frames

6. Bending CHAPTER OBJECTIVES

3 Relation between complete and natural degrees of freedom

Structural Analysis Lab

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Parametric study on the transverse and longitudinal moments of trough type folded plate roofs using ANSYS

Slender Structures Load carrying principles

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives

ENGN2340 Final Project: Implementation of a Euler-Bernuolli Beam Element Michael Monn

Question 1. Ignore bottom surface. Problem formulation: Design variables: X = (R, H)

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION

Finite Element Method in Geotechnical Engineering

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

ME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

Lecture 7: The Beam Element Equations.

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

Bending Stress. Sign convention. Centroid of an area

Workshop 8. Lateral Buckling

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Virtual Work & Energy Methods. External Energy-Work Transformation

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

December 10, PROBLEM NO points max.

PILE SOIL INTERACTION MOMENT AREA METHOD

A.0 IDUKKI ARCH DAM - ANALYSIS FOR VARIOUS LOAD CASES AND DISCRETISATIONS

Nomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam

ME 1401 FINITE ELEMENT ANALYSIS UNIT I PART -A. 2. Why polynomial type of interpolation functions is mostly used in FEM?

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

William J. McCutcheon U.S. Department of Agriculture, Forest Service Forest Products Laboratory Madison, Wisconsin 53705

Abstract. 1 Introduction

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

This procedure covers the determination of the moment of inertia about the neutral axis.

Indeterminate Analysis Force Method 1

Discontinuous Distributions in Mechanics of Materials

PES Institute of Technology

Finite Element Method for Solids and Structures 4 Paul Dryburgh S Assignment: Modelling of shallow and deep beams Due: 15/10/2014

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON)

INTRODUCTION TO STRAIN

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Transcription:

FEA CODE WITH MATAB Finite Element Analysis of an Arch ME 5657 FINITE EEMENT METHOD Submitted by: APAY BURAK DEMIRYUREK

This report summarizes the finite element analysis of an arch-beam with using matlab. The geometry and material properties of arch-beam given is shown below Following assumptions are made in FEA of the beam - Global coordinate system X-Y is located at left hand side support. So that center of arch is located at R cos(90-φ /). - Height of the arch beam changes linearly along its arch length. An average beam height is taken into consideration for each element. Such that, h avg = h i + h j h i = height at i th Node h j = height at j th Node - External load P applied on element by using its horizontal distance from the origin (X=0, Y=0), Vertical distance variations from the original point application to elements are ignored. - Elements and nodes are numbered starting from the left hand side support. Such that, first element is numbered as 1 and node 1 at i th end at j th end. - Counterclockwise Moments, and X-Y directions shown above are considered as + ve directions.

Structure Stiffness Matrix in ocal Coordinates where ; X = EA k local = X 0 0 X 0 0 0 Y Z 0 Y Z 0 Z T 0 Z W X 0 0 X 0 0 0 Y Z 0 Y Z [ 0 Z W 0 Z T ] Y = 1EI z (1 + φ y ) 3 Z = 6EI z (1 + φ y ) T = (4 + φ y)ei z (1 + φ y ) W = ( φ y)ei z (1 + φ y ) Since, the height of the arch beam changes linearly along its arch length in order to use above stiffness matrix, an average beam height is taken into consideration. Such that, Consistent Nodal Force Vector h i = height at i th Node h avg = h i + h j h j = height at j th Node To determine consistent nodal forces due to self-weight, following integral statement is used. {R b } = F b A [N] T dx 0 To obtain 6 by 1 local consistent nodal force vector following shape functions are used to evaluate axial force, and Vertical force End moment couples. [N bar ] = [1 x [N beam ] = [1 3 ( x ) + ( x )3 x(1 ( x ) + (x ) 3 ( x ) ( x )3 x ( ( x ) + (x ) ) ] Based on the assumption of constant area along the element, and given constant material unit weight above integrals are computed symbolically and following load vectors are obtained. x ] {r bar } = F bx A [ ] {r beam } = F by A [ 1 1]

Combining these two consistent nodal force vectors. Following consistent nodal force vector due to body force is obtained {r b } = F bx A F by A F by A 1 F bx A F by A [ F bya 1 ] U 1 V 1 Θ 1 U V Θ Consistent nodal forces due to applied point load, Following local consistent nodal load vector gives the forces at nodes {r e } = b P x P y b ( + a) [ 3 ab P y a P x P y a ( + b) 3 P y a b ] U 1 V 1 Θ 1 U V Θ

DOF-solution and convergence By using matlab script provided in Appendix, for 4,8,16,3 and 64 elements convergence of DOFs evaluated. Following graphs for different mesh sizes are obtained.

For given criterion, %1 difference in deflections from previous case, mid-point deflections of different mesh size analyses are compared. Given criterion is satisfied when # Elements = 64 Stresses for converged case (N=64) For calculation of stresses along the beam, Eqn s..9-3 to.9-6 from Cook. Et al. are used. To compute normal stresses along the element following equation is implemented into matlab code To compute bending stresses at top of the section # Elements u (m) v (m) Δu (%) Δv (%) 4 5.68E-05-1.9E-05 - - 8 6.14E-05 -.6E-05 0.08089 0.367057 16 6.33E-05 -.8E-05 0.09941 0.097515 3 6.38E-05 -.9E-05 0.00811 0.07599 64 6.39E-05 -.9E-05 0.00054 0.007143 σ N = E u u 1 σ b = E h avg [( 6 + 1x 3 ) v 1 + ( 4 + 6x ) θ 1 + ( 6 1x 3 ) v + ( + 6x ) θ ] Bending stresses are computed at ith node of each element, where x=0. To compute shear stresses following expression is implemented. τ = c V A = cei A [(1 3 ) v 1 + ( 6 ) θ 1 + ( 1 3 ) v + ( 6 ) θ ]

# Elements u (m) v (m) Δu (%) Δv (%) 4 5.68E-05-1.9E-05 - - 8 6.14E-05 -.6E-05 0.08089 0.367057 16 6.33E-05 -.8E-05 0.09941 0.097515 3 6.38E-05 -.9E-05 0.00811 0.07599 64 6.39E-05 -.9E-05 0.00054 0.007143 18 6.4E-05 -.9E-05 0.000516 0.001797 56 6.4E-05 -.9E-05 0.00019 0.000451 As number of elements used in modeling of the beam increased, deflections at nodes converges to exact solution. One can obtain exact solution by using infinitely many elements to model the structure, however it is not efficient for computation. Thus optimum number of elements should be determined. Optimum number of elements can be determined for an acceptable accuracy, in our case %1 difference in displacements from previous case.

APPENDIX Material Properties Modulus of Elasticity (E) (kn/m ) 00000000 Poisson's Ratio(ν) 0 Shear Modulus(G) 100000000 Thermal Expansion C. (α) 0 Unit Weight(γ kn/m 3 ) 68.67 Section Properties Tapered or Not (1 or 0) 1 Section width(m) 0.1 0.1 Section height(m) 0.03 0.01 Cross Sectional Area(m ) 0.003 0.001 Moment of Inertia(z-z) (m 4 ).5E-07 8.33E-09 Moment of Inertia(y-y) (m 4 ) 0.000005 8.33E-07 Shear Area(y-y) 0.005 0.000833 Shear Area(z-z) 1.875E-07 6.94E-09 External oad Central Magnitude Angle (from eft End of Structure) X -10 0 0.1444 4-Elements Structure Geometry Number of Elements 64 Number of Nodes 65 inear or Curved(0 / 1) 1 Curved Beam R (m) 0.5 Central Angle ( Degrees) 90 First Element Starts at 0 0 ast Element Ends at 0.7071068 0 ast Element Not Curved 0 0 Boundary Conditions Node U V Theta 1 0 0 0 5 0 0 0

8-Elements Structure Mesh Element No X1 Y1 X Y A I i-thnode j-th Node 1 0 0 0.161 0.108386 0.19509 0.0075 1.73307E-07 1 0.16117 0.108386 0.353553 0.146447 0.19509 0.005 9.4919E-08 3 3 0.3535534 0.146447 0.544895 0.108386 0.19509 0.00175 4.46615E-08 3 4 4 0.5448951 0.108386 0.707107 5.55E-17 0.19509 0.0015 1.676E-08 4 5 Structure Geometry Number of Elements 8 Number of Nodes 9 inear or Curved(0 / 1) 1 Curved Beam R (m) 0.5 Central Angle ( Degrees) 90 First Element Starts at 0 0 ast Element Ends at 0.7071068 0 ast Element Not Curved 0 0 Boundary Conditions Node U V Theta 1 0 0 0 9 0 0 0 Structure Mesh Element No X1 Y1 X Y A I i-thnode j-th Node 1 0 0 0.075768 0.06181 0.098017 0.00875 1.98031E-07 1 0.0757683 0.06181 0.161 0.108386 0.098017 0.0065 1.5073E-07 3 3 0.16117 0.108386 0.56008 0.136839 0.098017 0.00375 1.11637E-07 3 4 4 0.56008 0.136839 0.353553 0.146447 0.098017 0.0015 7.9964E-08 4 5 5 0.3535534 0.146447 0.451099 0.136839 0.098017 0.001875 5.49316E-08 5 6 6 0.4510986 0.136839 0.544895 0.108386 0.098017 0.00165 3.57585E-08 6 7 7 0.5448951 0.108386 0.631339 0.06181 0.098017 0.001375.16634E-08 7 8 8 0.6313385 0.06181 0.707107 5.55E-17 0.098017 0.00115 1.1865E-08 8 9 16 Elements Structure Geometry Number of Elements 16 Number of Nodes 17 inear or Curved(0 / 1) 1 Curved Beam R (m) 0.5 Central Angle ( Degrees) 90 First Element Starts at 0 0 ast Element Ends at 0.7071068 0 ast Element Not Curved 0 0

Boundary Conditions Node U V Theta 1 0 0 0 17 0 0 0 Structure Mesh Element No X1 Y1 X Y A I i-thnode j-th Node 1 0 0 0.036357 0.0395 0.049068 0.00938.118E-07 1 0.0363567 0.0395 0.075768 0.06181 0.049068 0.00813 1.85394E-07 3 3 0.0757683 0.06181 0.117855 0.087407 0.049068 0.00688 1.61757E-07 3 4 4 0.117855 0.087407 0.161 0.108386 0.049068 0.00563 1.40E-07 4 5 5 0.16117 0.108386 0.08411 0.14917 0.049068 0.00438 1.0685E-07 5 6 6 0.084111 0.14917 0.56008 0.136839 0.049068 0.00313 1.03054E-07 6 7 7 0.56008 0.136839 0.304545 0.144039 0.049068 0.00188 8.794E-08 7 8 8 0.3045448 0.144039 0.353553 0.146447 0.049068 0.00063 7.3114E-08 8 9 9 0.3535534 0.146447 0.4056 0.144039 0.049068 0.001938 6.06099E-08 9 10 10 0.4056 0.144039 0.451099 0.136839 0.049068 0.001813 4.96195E-08 10 11 11 0.4510986 0.136839 0.498696 0.14917 0.049068 0.001688 4.0045E-08 11 1 1 0.4986957 0.14917 0.544895 0.108386 0.049068 0.001563 3.17891E-08 1 13 13 0.5448951 0.108386 0.5895 0.087407 0.049068 0.001438.47538E-08 13 14 14 0.589518 0.087407 0.631339 0.06181 0.049068 0.001313 1.88416E-08 14 15 15 0.6313385 0.06181 0.67075 0.0395 0.049068 0.001188 1.39547E-08 15 16 16 0.67075 0.0395 0.707107 5.55E-17 0.049068 0.001063 9.9955E-09 16 17 3 Elements Structure Geometry Number of Elements 3 Number of Nodes 33 inear or Curved(0 / 1) 1 Curved Beam R (m) 0.5 Central Angle ( Degrees) 90 First Element Starts at 0 0 ast Element Ends at 0.7071068 0 ast Element Not Curved 0 0 Boundary Conditions Node U V Theta 1 0 0 0 33 0 0 0

64 Elements Structure Mesh Element No X1 Y1 X Y A I i-thnode j-th Node 1 0 0 0.017774 0.0169 0.04541 0.00969.1804E-07 1 0.0177739 0.0169 0.036357 0.0395 0.04541 0.00906.04559E-07 3 3 0.0363567 0.0395 0.055704 0.04805 0.04541 0.00844 1.91643E-07 3 4 4 0.0557037 0.04805 0.075768 0.06181 0.04541 0.00781 1.7983E-07 4 5 5 0.0757683 0.06181 0.09650 0.075311 0.04541 0.00719 1.67466E-07 5 6 6 0.09650 0.075311 0.117855 0.087407 0.04541 0.00656 1.5618E-07 6 7 7 0.117855 0.087407 0.139776 0.098441 0.04541 0.00594 1.45413E-07 7 8 8 0.1397758 0.098441 0.161 0.108386 0.04541 0.00531 1.3515E-07 8 9 9 0.16117 0.108386 0.185108 0.11719 0.04541 0.00469 1.5386E-07 9 10 10 0.1851085 0.11719 0.08411 0.14917 0.04541 0.00406 1.1610E-07 10 11 11 0.084111 0.14917 0.3063 0.13146 0.04541 0.00344 1.0788E-07 11 1 1 0.30633 0.13146 0.56008 0.136839 0.04541 0.0081 9.8931E-08 1 13 13 0.56008 0.136839 0.80188 0.141035 0.04541 0.0019 9.1015E-08 13 14 14 0.80188 0.141035 0.304545 0.144039 0.04541 0.00156 8.3544E-08 14 15 15 0.3045448 0.144039 0.390 0.145844 0.04541 0.00094 7.6488E-08 15 16 16 0.390196 0.145844 0.353553 0.146447 0.04541 0.00031 6.98407E-08 16 17 17 0.3535534 0.146447 0.378087 0.145844 0.04541 0.001969 6.3590E-08 17 18 18 0.378087 0.145844 0.4056 0.144039 0.04541 0.001906 5.7743E-08 18 19 19 0.4056 0.144039 0.46919 0.141035 0.04541 0.001844 5.306E-08 19 0 0 0.469186 0.141035 0.451099 0.136839 0.04541 0.001781 4.7097E-08 0 1 1 0.4510986 0.136839 0.475043 0.13146 0.04541 0.001719 4.3114E-08 1 0.4750435 0.13146 0.498696 0.14917 0.04541 0.001656 3.78614E-08 3 3 0.4986957 0.14917 0.51998 0.11719 0.04541 0.001594 3.37349E-08 3 4 4 0.519983 0.11719 0.544895 0.108386 0.04541 0.001531.99197E-08 4 5 5 0.5448951 0.108386 0.567331 0.098441 0.04541 0.001469.64036E-08 5 6 6 0.5673309 0.098441 0.5895 0.087407 0.04541 0.001406.31743E-08 6 7 7 0.589518 0.087407 0.610605 0.075311 0.04541 0.001344.0197E-08 7 8 8 0.6106048 0.075311 0.631339 0.06181 0.04541 0.00181 1.7575E-08 8 9 9 0.6313385 0.06181 0.651403 0.04805 0.04541 0.00119 1.50856E-08 9 30 30 0.651403 0.04805 0.67075 0.0395 0.04541 0.001156 1.8817E-08 30 31 31 0.67075 0.0395 0.689333 0.0169 0.04541 0.001094 1.09037E-08 31 3 3 0.689339 0.0169 0.707107 5.55E-17 0.04541 0.001031 9.1395E-09 3 33 Structure Geometry Number of Elements 64 Number of Nodes 65 inear or Curved(0 / 1) 1 Curved Beam R (m) 0.5 Central Angle ( Degrees) 90 First Element Starts at 0 0 ast Element Ends at 0.7071068 0 ast Element Not Curved 0 0 Boundary Conditions Node U V Theta 1 0 0 0 65 0 0 0

Structure Mesh Element No X1 Y1 X Y A I i-thnode j-th Node 1 0 0 0.008783 0.00857 0.017 0.00984.1503E-07 1 0.0087831 0.00857 0.017774 0.0169 0.017 0.00953.14617E-07 3 3 0.0177739 0.0169 0.06967 0.05051 0.017 0.009.07876E-07 3 4 4 0.06967 0.05051 0.036357 0.0395 0.017 0.00891.0177E-07 4 5 5 0.0363567 0.0395 0.045938 0.0406 0.017 0.00859 1.94819E-07 5 6 6 0.0459376 0.0406 0.055704 0.04805 0.017 0.0088 1.88501E-07 6 7 7 0.0557037 0.04805 0.065649 0.05539 0.017 0.00797 1.83E-07 7 8 8 0.0656493 0.05539 0.075768 0.06181 0.017 0.00766 1.7678E-07 8 9 9 0.0757683 0.06181 0.086055 0.068873 0.017 0.00734 1.7037E-07 9 10 10 0.0860546 0.068873 0.09650 0.075311 0.017 0.00703 1.64595E-07 10 11 11 0.09650 0.075311 0.107104 0.08149 0.017 0.0067 1.5895E-07 11 1 1 0.1071043 0.08149 0.117855 0.087407 0.017 0.00641 1.5344E-07 1 13 13 0.117855 0.087407 0.18748 0.093059 0.017 0.00609 1.48057E-07 13 14 14 0.187477 0.093059 0.139776 0.098441 0.017 0.00578 1.4801E-07 14 15 15 0.1397758 0.098441 0.150933 0.103551 0.017 0.00547 1.37671E-07 15 16 16 0.150937 0.103551 0.161 0.108386 0.017 0.00516 1.3665E-07 16 17 17 0.16117 0.108386 0.173606 0.11943 0.017 0.00484 1.778E-07 17 18 18 0.1736059 0.11943 0.185108 0.11719 0.017 0.00453 1.301E-07 18 19 19 0.1851085 0.11719 0.196713 0.1111 0.017 0.004 1.18379E-07 19 0 0 0.196715 0.1111 0.08411 0.14917 0.017 0.00391 1.13855E-07 0 1 1 0.084111 0.14917 0.0197 0.18335 0.017 0.00359 1.09448E-07 1 0.0197 0.18335 0.3063 0.13146 0.017 0.0038 1.05157E-07 3 3 0.30633 0.13146 0.44003 0.13498 0.017 0.0097 1.00979E-07 3 4 4 0.44008 0.13498 0.56008 0.136839 0.017 0.0066 9.6913E-08 4 5 5 0.56008 0.136839 0.6807 0.139085 0.017 0.0034 9.958E-08 5 6 6 0.68074 0.139085 0.80188 0.141035 0.017 0.0003 8.911E-08 6 7 7 0.80188 0.141035 0.9348 0.14686 0.017 0.0017 8.53735E-08 7 8 8 0.93481 0.14686 0.304545 0.144039 0.017 0.00141 8.17411E-08 8 9 9 0.3045448 0.144039 0.316771 0.14509 0.017 0.00109 7.813E-08 9 30 30 0.3167711 0.14509 0.390 0.145844 0.017 0.00078 7.47883E-08 30 31 31 0.390196 0.145844 0.34183 0.14696 0.017 0.00047 7.14649E-08 31 3 3 0.34188 0.14696 0.353553 0.146447 0.017 0.00016 6.8414E-08 3 33 33 0.3535534 0.146447 0.36584 0.14696 0.017 0.001984 6.51163E-08 33 34 34 0.36584 0.14696 0.378087 0.145844 0.017 0.001953 6.088E-08 34 35 35 0.378087 0.145844 0.390336 0.14509 0.017 0.0019 5.91554E-08 35 36 36 0.3903357 0.14509 0.4056 0.144039 0.017 0.001891 5.63164E-08 36 37 37 0.4056 0.144039 0.414759 0.14686 0.017 0.001859 5.35698E-08 37 38 38 0.4147587 0.14686 0.46919 0.141035 0.017 0.00188 5.09139E-08 38 39 39 0.469186 0.141035 0.439034 0.139085 0.017 0.001797 4.83473E-08 39 40 40 0.4390343 0.139085 0.451099 0.136839 0.017 0.001766 4.58685E-08 40 41 41 0.4510986 0.136839 0.463104 0.13498 0.017 0.001734 4.34758E-08 41 4 4 0.463104 0.13498 0.475043 0.13146 0.017 0.001703 4.11679E-08 4 43 43 0.4750435 0.13146 0.48691 0.18335 0.017 0.00167 3.89431E-08 43 44 44 0.4869098 0.18335 0.498696 0.14917 0.017 0.001641 3.67999E-08 44 45 45 0.4986957 0.14917 0.510394 0.1111 0.017 0.001609 3.47369E-08 45 46 46 0.5103943 0.1111 0.51998 0.11719 0.017 0.001578 3.754E-08 46 47 47 0.519983 0.11719 0.533501 0.11943 0.017 0.001547 3.0845E-08 47 48 48 0.5335009 0.11943 0.544895 0.108386 0.017 0.001516.90131E-08 48 49 49 0.5448951 0.108386 0.556174 0.103551 0.017 0.001484.755E-08 49 50 50 0.556174 0.103551 0.567331 0.098441 0.017 0.001453.55698E-08 50 51 51 0.5673309 0.098441 0.578359 0.093059 0.017 0.0014.39554E-08 51 5 5 0.5783591 0.093059 0.5895 0.087407 0.017 0.001391.4104E-08 5 53 53 0.589518 0.087407 0.60000 0.08149 0.017 0.001359.0933E-08 53 54 54 0.600005 0.08149 0.610605 0.075311 0.017 0.00138 1.955E-08 54 55 55 0.6106048 0.075311 0.6105 0.068873 0.017 0.00197 1.81766E-08 55 56 56 0.6105 0.068873 0.631339 0.06181 0.017 0.00166 1.68941E-08 56 57 57 0.6313385 0.06181 0.641457 0.05539 0.017 0.00134 1.56733E-08 57 58 58 0.6414575 0.05539 0.651403 0.04805 0.017 0.00103 1.4518E-08 58 59 59 0.651403 0.04805 0.661169 0.0406 0.017 0.00117 1.3411E-08 59 60 60 0.661169 0.0406 0.67075 0.0395 0.017 0.001141 1.3665E-08 60 61 61 0.67075 0.0395 0.68014 0.05051 0.017 0.001109 1.13777E-08 61 6 6 0.6801398 0.05051 0.689333 0.0169 0.017 0.001078 1.0443E-08 6 63 63 0.689339 0.0169 0.69834 0.00857 0.017 0.001047 9.561E-09 63 64 64 0.698337 0.00857 0.707107 5.55E-17 0.017 0.001016 8.73009E-09 64 65