Digital Filter Specifications. Digital Filter Specifications. Digital Filter Design. Digital Filter Specifications. Digital Filter Specifications

Similar documents
Designing of Analog Filters.

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design

Richard s Transformations

Review Problems 3. Four FIR Filter Types

Lecture 10 Filtering: Applied Concepts

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Digital Signal Processing

Chapter 8. Root Locus Techniques

FIR Digital Filter Design.

Design of Two-Channel Low-Delay FIR Filter Banks Using Constrained Optimization

Design of Digital Filters

Digital Control System

CMSC 828D: Fundamentals of Computer Vision Homework 10

ELECTRONIC FILTERS. Celso José Faria de Araújo, M.Sc.

EE Control Systems LECTURE 14

Optimization of frequency quantization. VN Tibabishev. Keywords: optimization, sampling frequency, the substitution frequencies.

Chapter 9. Design via Root Locus

Design By Emulation (Indirect Method)

Longitudinal Dispersion

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Compensation Techniques

Internal Model Control

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

Control Systems. Root locus.

Chapter 9 Compressible Flow 667

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

Control Systems. Root locus.

5.5 Application of Frequency Response: Signal Filters

Control Systems

Simple FIR Digital Filters. Simple FIR Digital Filters. Simple Digital Filters. Simple FIR Digital Filters. Simple FIR Digital Filters

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions:

Note: Please use the actual date you accessed this material in your citation.

THE SOLAR SYSTEM. We begin with an inertial system and locate the planet and the sun with respect to it. Then. F m. Then

HOMEWORK ASSIGNMENT #2

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

In Flow Performance Relationship - IPR Curves

Experimental Simulation of Digital IIR Filter Design Technique Based on Butterworth and Impulse Invariance Concepts

Lecture 5 Frequency Response of FIR Systems (III)

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

Automatic Control Systems. Part III: Root Locus Technique

Digital Signal Processing

Chapter #4 EEE Automatic Control

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

Homework Assignment No. 3 - Solutions

Grumman F-14 Tomcat Control Design BY: Chike Uduku

Analysis of Feedback Control Systems

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Systems Analysis. Prof. Cesar de Prada ISA-UVA

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Lecture 8 - SISO Loop Design

Lesson #15. Section BME 373 Electronics II J.Schesser

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Conservation of Momentum

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

UVa Course on Physics of Particle Accelerators

Lead/Lag Compensator Frequency Domain Properties and Design Methods

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) Solutions to Final Exam

EGN 3353C Fluid Mechanics

ACTIVE RC FILTERS ECEN 622 TAMU

PID CONTROL. Presentation kindly provided by Dr Andy Clegg. Advanced Control Technology Consortium (ACTC)

Inverse Kinematics 1 1/21/2018

Question 1 Equivalent Circuits

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Heat Effects of Chemical Reactions

RDF as Graph-Based, Diagrammatic Logic

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

The Second Law implies:

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

Improved Adaptive Time Delay Estimation Algorithm Based on Fourth-order Cumulants

Properties of Z-transform Transform 1 Linearity a

Roadmap for Discrete-Time Signal Processing

Stability Criterion Routh Hurwitz

x with A given by (6.2.1). The control ( ) ( )

ME 375 FINAL EXAM Wednesday, May 6, 2009

Tunable IIR Digital Filters

å Q d = 0 T dq =0 ò T reversible processes 1

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

EEO 401 Digital Signal Processing Prof. Mark Fowler

Figure 1 Siemens PSSE Web Site

Operational transconductance amplifier based voltage-mode universal filter

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

2. SYNTHESIS OF ANALOG FILTERS

Digital Signal Processing Lecture 8 - Filter Design - IIR

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

ROOT LOCUS. Poles and Zeros

LaPlace Transforms in Design and Analysis of Circuits Part 2: Basic Series Circuit Analysis

ELEG 305: Digital Signal Processing

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

SCHMIDT THEORY FOR STIRLING ENGINES

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

Designing PSAM Schemes: How Optimal are SISO Pilot Parameters for Spatially Correlated SIMO?

Photonic Communications and Quantum Information Storage Capacities

Lecture #9 Continuous time filter

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

Control Systems Analysis and Design by the Root-Locus Method

Transcription:

Digital Filter Deign Objetive - Determinatin f a realiable tranfer funtin G() arximating a given frequeny rene eifiatin i an imrtant te in the develment f a digital filter If an IIR filter i deired, G() huld be a table real ratinal funtin Digital filter deign i the re f deriving the tranfer funtin G() Digital Filter Seifiatin Uually, either the magnitude and/r the hae (delay) rene i eified fr the deign f digital filter fr mt aliatin In me ituatin, the unit amle rene r the te rene may be eified In mt ratial aliatin, the rblem f interet i the develment f a realiable arximatin t a given magnitude rene eifiatin Digital Filter Seifiatin We diu in thi ure nly the magnitude arximatin rblem There are fur bai tye f ideal filter with magnitude rene a hwn belw H LP(e j ) H BP (e j ) H HP(e j ) H BS(e j ) 4 Digital Filter Seifiatin A the imule rene rrending t eah f thee ideal filter i nnaual and f infinite length, thee filter are nt realiable In ratie, the magnitude rene eifiatin f a digital filter in the aband and in the tband are given with me aetable tlerane In additin, a tranitin band i eified between the aband and tband Digital Filter Seifiatin Fr examle, the magnitude rene G( e f a digital lwa filter may be given a indiated belw ) Digital Filter Seifiatin A indiated in the figure, in the aband, defined by ω ω, we require that G( e ) with an errr ± δ, i.e., δ G( e ) + δ, ω ω In the tband, defined by ω ω π, we require that G( e ) with an errr δ, i.e., G ( e ) δ, ω ω π 5 6

7 Digital Filter Seifiatin ω - aband edge frequeny ω - tband edge frequeny δ - eak rile value in the aband δ - eak rile value in the tband Sine G( e ) i a eridi funtin f ω, and G( e ) f a real-effiient digital filter i an even funtin f ω A a reult, filter eifiatin are given nly fr the frequeny range ω π 8 Digital Filter Seifiatin Seifiatin are ften given in term f l funtin A ( ω) lg G( e ) in db Peak aband rile α lg( δ ) db Minimum tband attenuatin α lg ( δ ) db Digital Filter Seifiatin Magnitude eifiatin may alternately be given in a nrmalied frm a indiated belw Digital Filter Seifiatin Here, the maximum value f the magnitude in the aband i aumed t be unity / + ε - Maximum aband deviatin, given by the minimum value f the magnitude in the aband - Maximum tband magnitude A 9 Digital Filter Seifiatin Fr the nrmalied eifiatin, maximum value f the gain funtin r the minimum value f the l funtin i db Maximum aband attenuatin - αmax lg( + ε ) db Fr δ <<, it an be hwn that α lg ( δ ) db max Digital Filter Seifiatin In ratie, aband edge frequeny F and tband edge frequeny F are eified in H Fr digital filter deign, nrmalied bandedge frequenie need t be muted frm eifiatin in H uing Ω πf ω πft FT FT Ω πf ω πf T F F T T

Digital Filter Seifiatin Examle-Let F 7 kh, F kh, and F T 5 kh Then π(7 ) ω. 56π 5 π( ) ω. 4π 5 4 Seletin f Filter Tye The tranfer funtin H() meeting the frequeny rene eifiatin huld be a aual tranfer funtin Fr IIR digital filter deign, the IIR tranfer funtin i a real ratinal funtin f : + H ( ) d + d + + d + L+ + L+ d M M N N, M N H() mut be a table tranfer funtin and mut be f lwet rder N fr redued mutatinal mlexity 5 Seletin f Filter Tye Fr FIR digital filter deign, the FIR tranfer funtin i a lynmial in with real effiient: H ( ) h[ n] n n Fr redued mutatinal mlexity, degree N f H() mut be a mall a ible If a linear hae i deired, the filter effiient mut atify the ntraint: h[ n] ± h[ N n] N 6 Seletin f Filter Tye Advantage in uing an FIR filter - () Can be deigned with exat linear hae, () Filter truture alway table with quantied effiient Diadvantage in uing an FIR filter - Order f an FIR filter, in mt ae, i niderably higher than the rder f an equivalent IIR filter meeting the ame eifiatin, and FIR filter ha thu higher mutatinal mlexity 7 Digital Filter Deign: Bai Arahe Mt mmn arah t IIR filter deign - () Cnvert the digital filter eifiatin int an analg rttye lwa filter eifiatin () Determine the analg lwa filter tranfer funtin H a () () Tranfrm H a () int the deired digital tranfer funtin G() 8 Digital Filter Deign: Bai Arahe Thi arah ha been widely ued fr the fllwing rean: () Analg arximatin tehnique are highly advaned () They uually yield led-frm lutin () Extenive table are available fr analg filter deign (4) Many aliatin require digital imulatin f analg ytem

9 Digital Filter Deign: Bai Arahe An analg tranfer funtin t be dented a Pa ( ) Ha ( ) D ( ) where the ubrit a eifially indiate the analg dmain A digital tranfer funtin derived frm hall be dented a P( ) G ( ) D( ) a H a () Digital Filter Deign: Bai Arahe Bai idea behind the nverin f H a () int G() i t aly a maing frm the -dmain t the -dmain that eential rertie f the analg frequeny rene are reerved Thu maing funtin huld be uh that Imaginary ( jω) axi in the -lane be maed nt the unit irle f the -lane A table analg tranfer funtin be maed int a table digital tranfer funtin Digital Filter Deign: Bai Arahe FIR filter deign i baed n a diret arximatin f the eified magnitude rene, with the ften added requirement that the hae be linear The deign f an FIR filter f rder N may be amlihed by finding either the length-(n+) imule rene amle r the (N+) amle f it frequeny rene H ( e ) { h[n] } Digital Filter Deign: Bai Arahe Three mmnly ued arahe t FIR filter deign - () Windwed Furier erie arah () Frequeny amling arah () Cmuter-baed timiatin methd IIR Digital Filter Deign: Bilinear Tranfrmatin Methd Bilinear tranfrmatin - T + Abve tranfrmatin ma a ingle int in the -lane t a unique int in the -lane and vie-vera Relatin between G() and H a () i then given by G( ) H a ( ) T + 4 Bilinear Tranfrmatin Digital filter deign nit f te: () Devel the eifiatin f H a () by alying the invere bilinear tranfrmatin t eifiatin f G() () Deign H a () () Determine G() by alying bilinear tranfrmatin t H a () A a reult, the arameter T ha n effet n G() and T i hen fr nveniene 4

5 Bilinear Tranfrmatin Invere bilinear tranfrmatin fr T i + Fr σ + jω ( + σ) + jω ( + σ) + Ω ( σ ) jω ( σ) + Ω Thu, σ σ σ < < > > 6 Bilinear Tranfrmatin Maing f -lane int the -lane r Bilinear Tranfrmatin Fr e jω e + e Ω tan(ω/ ) with T we have / / / e ( e e ) / / / e ( e + e ) jin( ω/ ) j tan( ω/ ) ( ω/ ) Bilinear Tranfrmatin Maing i highly nnlinear Cmlete negative imaginary axi in the - lane frm Ω t Ω i maed int the lwer half f the unit irle in the -lane frm t Cmlete itive imaginary axi in the - lane frm Ω t Ω i maed int the uer half f the unit irle in the -lane frm t 7 8 9 Bilinear Tranfrmatin Nnlinear maing intrdue a ditrtin in the frequeny axi alled frequeny waring Effet f waring hwn belw Ω Ω tan(ω/) Bilinear Tranfrmatin Ste in the deign f a digital filter - () Prewar( ω, ω ) t find their analg equivalent ( Ω, Ω ) () Deign the analg filter H a () () Deign the digital filter G() by alying bilinear tranfrmatin t H a () Tranfrmatin an be ued nly t deign digital filter with reribed magnitude rene with ieewie ntant value Tranfrmatin de nt reerve hae rene f analg filter 5

IIR Digital Filter Deign Uing Bilinear Tranfrmatin Examle- Cnider Ω Ha( ) + Ω Alying bilinear tranfrmatin t the abve we get the tranfer funtin f a firt-rder digital lwa Butterwrth filter Ω ( ) ( ) ( ) + G H a ( ) + Ω ( + ) + IIR Digital Filter Deign Uing Bilinear Tranfrmatin Rearranging term we get where G ( ) α + Ω α + Ω α tan( ω + tan( ω / ) / ) IIR Digital Filter Deign Uing Bilinear Tranfrmatin Examle-Cnider the end-rder analg nth tranfer funtin + Ω Ha( ) + B + Ω fr whih H a ( jω ) Ha( j) Ha( j ) Ω i alled the nth frequeny If Ha( jω ) Ha( jω) / then B Ω i the -db nth bandwidth Ω 4 IIR Digital Filter Deign Uing Bilinear Tranfrmatin Then where G( ) H a ( ) + ) + ) + ( + Ω ) ( Ω ( + Ω ( + Ω + B) ( Ω ( + Ω + α β + β ( + α) + α α β + + Ω + Ω Ω + Ω B tan( B B + tan( B ω w w / ) / ) ) B) 5 IIR Digital Filter Deign Uing Bilinear Tranfrmatin Examle- Deign a nd-rder digital nth filter erating at a amling rate f 4 H with a nth frequeny at 6 H, -db nth bandwidth f 6 H Thu ω π(6/ 4). π B w π(6/ 4). π Frm the abve value we get α.999 β.587785 6 IIR Digital Filter Deign Uing Bilinear Tranfrmatin Thu.954965.687 +.954965 G( ).687 +.999 The gain and hae rene are hwn belw Gain, db - - - -4 5 5 Frequeny, H Phae, radian - - 5 5 Frequeny, H 6

7 IIR Lwa Digital Filter Deign Uing Bilinear Tranfrmatin Examle-Deign a lwa Butterwrth digital filter with ω. 5π, ω. 55π, α.5db, and α 5 db Thu ε.85 A. 6777 If G( ) thi imlie e j j.5π lg G( e ).5 j.55π lg G( e ) 5 8 IIR Lwa Digital Filter Deign Uing Bilinear Tranfrmatin Prewaring we get Ω tan( ω / ) tan(.5π/ ).446 Ω tan( ω / ) tan(.55π/ ).78496 The invere tranitin rati i Ω.86689 k Ω The invere diriminatin rati i A 5.84979 k ε 9 IIR Lwa Digital Filter Deign Uing Bilinear Tranfrmatin lg Thu N lg (/ k) (/ k) We he N T determine we ue H a ( jω Ω ) + ( Ω / Ω ).6586997 N + ε 4 IIR Lwa Digital Filter Deign Uing Bilinear Tranfrmatin We then get Ω.4995( Ω ).58848 rd-rder lwa Butterwrth tranfer funtin fr Ω i H an ( ) ( + )( + + ) Denrmaliing t get Ω.58848 we arrive at H ( ) H a an.58848 Magnitude 4 IIR Lwa Digital Filter Deign Uing Bilinear Tranfrmatin Alying bilinear tranfrmatin t H a () we get the deired digital tranfer funtin G( ) H ( ) a + Magnitude and gain rene f G() hwn belw:.8.6.4...4.6.8 ω/π Gain, db - - - -4..4.6.8 Cyright ω/π 5, S. K. Mitra 4 Deign f IIR Higha, Banda, and Bandt Digital Filter Firt Arah - () Prewar digital frequeny eifiatin f deired digital filter G D () t arrive at frequeny eifiatin f analg filter H D () f ame tye () Cnvert frequeny eifiatin f H D () int that f rttye analg lwa filter H LP () () Deign analg lwa filter H LP () 7

4 Deign f IIR Higha, Banda, and Bandt Digital Filter (4) Cnvert H LP () int H D () uing invere frequeny tranfrmatin ued in Ste (5) Deign deired digital filter G D () by alying bilinear tranfrmatin t H D () Deign f IIR Higha, Banda, and Bandt Digital Filter 44 Send Arah - () Prewar digital frequeny eifiatin f deired digital filter G D () t arrive at frequeny eifiatin f analg filter H D () f ame tye () Cnvert frequeny eifiatin f H D () int that f rttye analg lwa filter H LP () 45 Deign f IIR Higha, Banda, and Bandt Digital Filter () Deign analg lwa filter H LP () (4) Cnvert H LP () int an IIR digital tranfer funtin G LP () uing bilinear tranfrmatin (5) Tranfrm G LP () int the deired digital tranfer funtin G D () We illutrate the firt arah 46 IIR Higha Digital Filter Deign Deign f a Tye Chebyhev IIR digital higha filter Seifiatin: F 7 H, F 5 H, α db, α db, F T kh Nrmalied angular bandedge frequenie πf π 7 ω. 7π FT πf π ω 5. 5π F T 47 IIR Higha Digital Filter Deign Prewaring thee frequenie we get tan( ω / ).9665 tan( ω / ). Fr the rttye analg lwa filter he Ω Ω Ω Uing Ω ˆ we get Ω. 965 Analg lwa filter eifiatin: Ω, Ω.965, α db, db α 48 IIR Higha Digital Filter Deign MATLAB de fragment ued fr the deign [N, Wn] hebrd(,.9665,,, ) [B, A] heby(n,, Wn, ); [BT, AT] lh(b, A,.9665); [num, den] bilinear(bt, AT,.5); Gain, db - - - -4-5..4.6.8 ω/π 8

49 IIR Banda Digital Filter Deign Deign f a Butterwrth IIR digital banda filter Seifiatin: ω. 45π, ω. 65π, ω. π, ω. 75π, α db, α 4dB Prewaring we get tan( ω / ).85487 tan( ω / ).6857 tan( ω / ).59554 tan( ω / ).4456 5 IIR Banda Digital Filter Deign Width f aband B w ˆ Ω.77777 ˆ Ω ˆ ˆ Ω Ω.97 ˆ ˆ Ω.5 Ω We therefre mdify that and exhibit gemetri ymmetry with reet t We et.577 Fr the rttye analg lwa filter we he Ω 5 IIR Banda Digital Filter Deign Uing Ω Ω Ω Bw we get.97.788.6767.577.77777 Seifiatin f rttye analg Butterwrth lwa filter: Ω, Ω. 6767, α db, 4 db α 5 IIR Banda Digital Filter Deign MATLAB de fragment ued fr the deign [N, Wn] buttrd(,.6767,, 4, ) [B, A] butter(n, Wn, ); [BT, AT] lb(b, A,.85647,.77777); [num, den] bilinear(bt, AT,.5); Gain, db - - - -4-5..4.6.8 ω/π 5 IIR Bandt Digital Filter Deign Deign f an elliti IIR digital bandt filter Seifiatin: ω. 45π, ω. 65π, ω. π, ω. 75π, α db, α 4dB Prewaring we get.85486,.6857, Ω ˆ.59554,. 446 Width f tband. 77777 B w ˆ Ω.97. 54 IIR Bandt Digital Filter Deign ˆ ˆ We therefre mdify Ω that and Ω exhibit gemetri ymmetry with reet t We et.577 Fr the rttye analg lwa filter we he Ω B Uing w Ω Ω we get ˆ ˆ Ω Ω.59554.77777 Ω.446.97.787 9

IIR Bandt Digital Filter Deign MATLAB de fragment ued fr the deign [N, Wn] ellird(.446,,, 4, ); [B, A] elli(n,, 4, Wn, ); [BT, AT] lb(b, A,.85647,.77777); [num, den] bilinear(bt, AT,.5); - 55 Gain, db - - -4-5..4.6.8 ω/π