RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

Similar documents
H.Burkhardt, DIS 2008, Future Facilities WG Tue 08/04/2008. LHeC Ring-Ring. early stage : all rather preliminary!

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

LHC Luminosity and Energy Upgrade

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Beam Optics design for CEPC collider ring

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

Lattice Design and Performance for PEP-X Light Source

The Large Hadron electron Collider (LHeC) at the LHC

Lattice design and dynamic aperture optimization for CEPC main ring

Luminosity Considerations for erhic

Overview of LHC Accelerator

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

Practical Lattice Design

Accelerators. Lecture V. Oliver Brüning. school/lecture5

ILC Damping Ring Alternative Lattice Design **

Accelerator Physics Final Exam pts.

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research

A Very Large Lepton Collider in a VLHC tunnel

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

6 Bunch Compressor and Transfer to Main Linac

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR

Why are particle accelerators so inefficient?

FCC-ee Machine Layout and Beam Optics + Matching with synchrotron motion

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

The Large Hadron Collider Lyndon Evans CERN

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

Operational Experience with HERA

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London

CERN & the High Energy Frontier

Accelerator Design of High Luminosity Electron-Hadron Collider erhic

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

An Introduction to Particle Accelerators. v short

Introduction to particle accelerators

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

The Large Hadron electron Collider at CERN

Tools of Particle Physics I Accelerators

ILC Damping Ring Alternative Lattice Design (Modified FODO)

The Electron-Ion Collider

Linear Collider Collaboration Tech Notes

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

Collider Rings and IR Design for MEIC

General Considerations

FACET-II Design Update

FROM HERA TO FUTURE ELECTRON-ION COLLIDERS*

Accelerator development

TeV Scale Muon RLA Complex Large Emittance MC Scenario

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

Notes on the HIE-ISOLDE HEBT

Overview of HEMC Scheme

HE-LHC Optics Development

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna

International Scientific Spring 2010, March 1-6, 1. R. Garoby. slhc

Status of Optics Design

Der lange Weg zu 200 GeV : Luminosität und höchste Energien bei LEP

Physics 610. Adv Particle Physics. April 7, 2014

Putting it all together

The TESLA Dogbone Damping Ring

Longitudinal Dynamics

FACET-II Design, Parameters and Capabilities

Engines of Discovery

LHC Status and CERN s future plans. Lyn Evans

STATUS OF BEPC AND PLAN OF BEPCII

Longitudinal Top-up Injection for Small Aperture Storage Rings

Choosing the Baseline Lattice for the Engineering Design Phase

Overview of Acceleration

LHC Collimation and Loss Locations

Introduction to Collider Physics

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

Challenges of the Beam Delivery System for the future Linear Colliders

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d.

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug

Thanks to all Contributors

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris

LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE

Compressor Lattice Design for SPL Beam

SC magnets for Future HEHIHB Colliders

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

e + e - Linear Collider

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

Introduction to Accelerators

The FAIR Accelerator Facility

WG2 on ERL light sources CHESS & LEPP

Luminosity for the 100 TeV collider

FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies

LHC upgrade based on a high intensity high energy injector chain

LHeC Recirculator with Energy Recovery Beam Optics Choices

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

Nick Walker (for WG3) Snowmass, 2001

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6

Transcription:

RING-RING DESIGN Miriam Fitterer, CERN - KIT for the LHeC study group

LHeC Design Options

LHeC Design Options Linac-Ring

LHeC Design Options Linac-Ring Ring-Ring Point 4 P Z4 5 P M4 5 P X4 6 Point 5 P X5 6 P o in t 3.3 P Z 3 3 RZ3 3 UJ 3 2 UJ 3 3 RE 32 RE 38 UJ 4 3 RE 42 UX4 5 UJ 4 4 RA4 3 UL4 4 UA4 3 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ 5 6 1 CMS RF P M5 6 TU5 6 UJ 5 6 UL5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 P X6 4 TD 62 P M6 5 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 TZ3 2 P M3 2 P o in t 3.2 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 US 2 5 UJ 2 6 UX2 5 e p P X2 4 UL 24 UW 2 5 UA2 3 UJ 2 4 UJ 23 RA2 3 RH2 3 UJ 2 2 TI 2 RE 22 PMI 2 RE 18 RT 18 P o in t 1.8 S P S Point 1 P M1 5 PM 18 P X1 5 P X1 6 P X1 4 UJ 1 8 US 1 5 RR1 7 UJ 1 7 UL1 6 UL1 4 UJ 1 4 RF TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 e-injector TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 Point 8 PM 85 UW 8 5 P X8 4 UA 83 P Z8 5 UL 84 US 85 UA8 7 UL 86 RA8 3 UJ 8 7 UJ 8 4 TX8 4 UJ 86 UX 85 RA 87 RH 87 RE 78 RE 82 UJ 83 UJ 8 2 TZ7 6 LEP LHC LHeC RR7 7 UJ 7 6 RR7 3

LHeC Design Options Linac-Ring Ring-Ring P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ 5 6 1 CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 P X2 4 UL 24 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS S P S Point 1 US A1 5 RF e-injector TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RE 78 RE 82 UJ 83 UJ 8 2 RR7 7 RR7 3 TZ7 6 LEP LHC LHeC UJ 7 6

General Layout

General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ 5 6 1 CMS Point 5 P X5 6 P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 TI 1 8 UJ 1 6 ATLAS S P S Point 1 US A1 5 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 UX1 5 TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 Point 8 PM 85 UW 8 5 P X8 4 UA 83 P Z8 5 UL 84 US 85 UA8 7 UL 86 RA8 3 UJ 8 7 UJ 8 4 TX8 4 UJ 86 UX 85 RA 87 RH 87 RE 78 RE 82 UJ 83 UJ 8 2 TZ7 6 LEP LHC RR7 7 UJ 7 6 RR7 3

General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ 5 6 1 CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 S P S Point 1 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 RF e-injector TT 40 PGC 8 LS S 4 TJ 8 TI 8 UJ 88 UJ 1 3 RE 12 RE 88 RR1 3 UJ 12 TI 1 2 RT1 2 Point 8 PM 85 UW 8 5 P X8 4 UA 83 P Z8 5 UL 84 US 85 UA8 7 UL 86 RA8 3 UJ 8 7 UJ 8 4 TX8 4 UJ 86 UX 85 RA 87 RH 87 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC

General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ 5 6 1 CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UJ 6 8 TD6 8 UD6 8 N RE 68 UP 68 RE 28 Point 7 RE 72 UJ 2 7 UA2 7 Point 2 P M7 6 P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS S P S Point 1 US A1 5 RF e-injector TI 1 2 UJ 1 3 LS S 4 RR1 3 RT1 2 UJ 12 TT 40 PGC 8 TJ 8 TI 8 RE 12 RE 88 UJ 88 0.6 GeV from EPA UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC

General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ 5 6 1 CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 Bypass CMS x 124 m free sections 20 10 IP5 UJ 6 8-600 TD6 8 600 UD6 8 81 m 92 m z RE 28 N RE 68 UP 68-10 UJ 2 7 UA2 7 Point 2 Point 7 P M7 6 RE 72 S.BP -20 E.BP P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 S P S Point 1 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 RF e-injector TI 1 2 UJ 1 3 LS S 4 RR1 3 RT1 2 UJ 12 TT 40 PGC 8 TJ 8 TI 8 RE 12 RE 88 UJ 88 0.6 GeV from EPA UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC

General Layout P Z 3 3 RZ3 3 RE 38 UJ 3 2 UJ 3 3 RE 32 P M3 2 TZ3 2 P o in t 3.3 P o in t 3.2 UJ 4 3 RE 42 Point 4 RA4 3 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P X4 6 P M4 5 TX4 6 UJ 4 6 UL4 6 US 4 5 UW 4 5 RA4 7 UA4 7 Detector UJ 4 7 RE 48 RE 52 RR 53 UJ 5 3 UL 54 UP 5 3 RZ5 4 UXC5 5 P M5 4 US C5 5 UJ 5 6 1 CMS Point 5 P X5 6 RF P M5 6 UJ 5 6 UL5 6 TU5 6 UJ 5 7 RE 58 RE 62 RR 57 UP 62 Point 6 UD 62 TD 62 P M6 5 P X6 4 P Z6 5 UJ 62 RA6 3 TX6 4 UJ 63 UA6 3 UX6 5 UJ 6 4 UL6 4 UJ 6 6 RA6 7 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 Bypass CMS x 124 m free sections 20 10 IP5 UJ 6 8-600 TD6 8 600 UD6 8 81 m 92 m z RE 28! $# N RE 68 UP 68-10! "# UJ 2 7 UA2 7 Point 2 l* 1 Point 7 P M7 6 RE 72 S.BP -20 E.BP P GC2 RA2 7 UL 26 P M2 5 UP 2 5 UJ 2 6 US 2 5 e p P X2 4 UL 24 UX2 5 UJ 2 4 RA2 3 RH2 3 UJ 2 2 UW 2 5 UA2 3 UJ 23 TI 2 RE 22 PMI 2 RE 18 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 RT 18 S P S Point 1 P M1 5 P X1 5 P X1 4 US 1 5 UL1 4 UJ 1 4 TI 1 8 UJ 1 6 UX1 5 ATLAS US A1 5 RF e-injector TI 1 2 l* 2 UJ 1 3 LS S 4 RR1 3 RT1 2 UJ 12 TT 40 PGC 8 TJ 8 TI 8 RE 12 RE 88 UJ 88 0.6 GeV from EPA UJ 8 7 RH 87 UA8 7 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 P Z8 5 UL 84 UX 85 P X8 4 TX8 4 UA 83 UJ 8 4 RA8 3 RR7 3 TZ7 6 UJ 7 6 RE 78 RR7 7 RE 82 UJ 8 2 UJ 83 LEP LHC LHeC 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC

Injector LHeC requires new 10 GeV e+/e- injector Pre-injector: e.g. LIL+EPA type e+/e- Injector (LEP) - 0.6 GeV at extraction Injector: simplified and down scaled ELFE design: Total filling time less than 10 minutes 0.6 GeV from EPA 6.87 GeV 3.73 GeV ~20 m 4 ILC RF-units, 156 m, providing 3.13 GV Recirculating linac 10 GeV to LHeC

Main Ring Design Parameters Electrons Protons Energy 60 GeV 7 TeV Current 100 ma 860 ma Part. per bunch 2 10 10 1.7 10 11 Numb. of bunches 2808 2808 εx /εy 5.0 / 2.5 nm 0.5 / 0.5 nm Pγ < 50 MW

Main Ring - Integration I p-ring and e-ring have to fit into the existing LHC tunnel Match e-ring and p-ring circumference, because: p-beam could be heated up by the e-beam in the case of asymmetric collision schemes [*] [*] K. Hirata and E. Keil, Barycenter motion of beams due to beam-beam interaction in asymmetric ring colliders, Proc. EPAC 1990 LHeC Bypasses increase the circumference compensation by placing the ring more on the inside in respect to the LHC Typical cross section of the LHC tunnel

Main Ring - Integration II Main Challenges: 1. QRL jumper connection at every second proton quadrupole in the main arc and around 8 per straight section QRL jumper connection 2. Insertions, especially Dump Area, Collimation, RF, Cryogenics...

Main Ring - Optics Βx, Βy, 100Dx 100Dy m 140 120 100 80 60 40 20 0 0 20 40 60 80 100 Main Arc: sm 2 LFODO, LHeC LFODO, LHC FODO lattice with no elements at positions of QRL jumper connection main integration interferences avoided Βx, Βy, 100Dx 100Dy m 150 100 50 0 Insertions 0 200 400 600 800 sm similar design for even and odd insertions exemplarily avoiding QRL jumper connections in insertions detailed design for each insertions at a later stage, but no real show stoppers

Bypass Layout General Design: Insertion of a straight section into the lattice leads to a separation normal bend straight ΔBP LBP Lnew tunnel Ltot, straight sections ATLAS 16.25 m 1303.3 m 1061 m 172 m inverted bend arc CMS 20.56 m 1303.3 m 1061 m 297 m Bypass ATLAS x S.BP1 20 E.BP1 Bypass CMS x 124 m free sections 20 RF 10 10 38 m 50 m -500 IP1 500 z IP5-600 600 81 m 92 m -10 z free sections -10 RF 42 m 42 m Injection S.BP -20 E.BP -20

Bypass Optics TLIR IR TRIR DSLSSL LSSL BP Nomenclature LSSR DSLSSR βx, max 142 βy, max 138 Βx, Βy, 100Dx 100Dy m 150 100 50 0 50 8 14 14 8 LSSL IR LSSR DSLSSL TLIR TRIR DSLSSR 0 500 1000 1500 sm

0.3 electron beam x [m] 0.2 0.1 0-0.1 Proton final focusing half quadrupole Interaction Region separator dipole Proton beam 1 Degree 2 6.2 m Electron final focusing quads Electron beam proton beam -0.2-0.3 0.3 0.2 0.1-30 -25-20 proton half quadrupole Proton final focusing half quadrupole -15 electron -10-5 doublet Electron separator dipole SR Absorber 0 5 10 15 20 25 30 z [m] 10 Degree 2 1.2 m Electron final focusing quads separator dipole synrad absorber synrad absorber proton beam electron beam x [m] 0-0.1 Proton beam Electron beam -0.2-0.3-30 -25-20 -15-10 -5 electron triplet Electron separator dipole SR Absorber proton half quadrupole 0 5 10 15 20 25 30 z [m]

Beamsize: σ = βɛ High Acceptance (1 Degree) Parameters Reminder: Beta-function (drift space) β(s) =β + l 2 High Luminosity (10 Degree) β Electrons Protons βx 0.4 m 4.05 m βy 0.2 m 0.97 m l* 6 m 22.96 m σx 45 µm σy 22 µm Crossing angle 1 mrad Luminosity 8.54 10 32 cm -2 s -1 Luminosity loss factor 86% Luminosity 7.33 10 32 cm -2 s -1 Pγ Ec 51 kw 163 kev Electrons Protons βx 0.18 m 1.8 m βy 0.1 m 0.5 m l* 1.2 m 22.96 m σx 30 µm σy 15.8 µm Crossing angle 1 mrad Luminosity 1.8 10 33 cm -2 s -1 Luminosity loss factor 75% Luminosity 1.34 10 33 cm -2 s -1 Pγ Ec 33 kw 126 kev

IR Optics - Electrons 1 Degree 600 Βx, Βy, 100Dx 100Dy m 400 200 0 0 200 400 600 800 sm

IR Optics - Electrons 10 Degree 300 250 Βx, Βy, 100Dx 100Dy m 200 150 100 50 0 50 0 200 400 600 800 sm

e-a Collisions Assume present nominal Pb beam in LHC: same beam size as protons, fewer bunches (592 bunches, Nb=7 10 7 208 Pb 82+ nuclei) Assume e-injector chain can provide the desired bunch pattern (592 bunches of Nb=6 10 10 e - ) Lepton-nucleus and lepton-nucleon luminosity at 60 GeV and 45 MW synchrotron radiation losses L=5 10 29 cm -2 s -1 Len=1 10 31 cm -2 s -1

Main Ring NC Magnet Design Dipole Challenge: Field reproducibility at injection (10 GeV) Constant field quality during the ramp Compactness Compatibility with synchrotron radiation power 35 cm Models by BINP (silicon steel iron lamination) and CERN (interleaved iron plastic laminations plastic: iron=2:1) achieving required field reproducibility. Beam Energy 10-60 GeV Number of magnets 3080 Magnetic length Magnetic field Vertical aperture Pole width Conductor material Total power consumption of all dipoles at 60 GeV Cooling Field reproducibility 5.35 m 127-763 Gauss 40 mm 150 mm copper/aluminium 0.8 MW air or water (depending on tunnel ventilation) <0.1 Gauss

Arc quadrupole: Main Ring NC Magnet Design Quadrupole Challenge: Compactness Insertion/bypass quadrupoles: 30 cm Number of magnets Magnetic length Magnetic field 368 (QF) + 368 (QD) 1.0 m 8.4 (QD) 10.28 T/m (QF) Number of magnets Magnetic length Magnetic field 35 cm 148 (QF) + 148 (QD) 1.0 m (QF) / 0.7 m (QD) approx. 18 T/m Radial aperture 30 mm Radial aperture 30 mm Weight 700 kg Weight 700 kg (QF) / 500 kg (QD) Conductor material copper Conductor material copper Total power (60 GeV) 2.5 kw Total power (60 GeV) 6.0 kw (QF) / 4.5 kw (QD) Cooling water Cooling water

Proton SC IR Magnets Separation Scheme: 0.3 Electron final focusing quads 0.2 0.1 Proton final focusing half quadrupole separator dipole proton beam x [m] electron beam 0-0.1 Proton beam Electron beam -0.2-0.3 Electron separator dipole synrad absorber SR Absorber -30-25 -20 proton half quadrupole -15-10 -5 0 5 10 15 20 25 30 Magnet Design: similar to LHC MQXA magnets, no real challenges in respect of gradient Challenge: - field free region for electron - allow for a minimal distance between electron and proton beam z [m]

e Proton SC IR Magnets Proton SC magnet design Q1: Half Quadrupole with field free regions for the e-beam Radial aperture B0 g0 Beam separation operation percentage on the load line of the sc Bfringe e-aperture gfringe e-aperture Q2: Single aperture 0 20 40 60 80 100 120 140 160 160 180 180 Q1 Q2 35 mm 137 T/m 2.5 T 65 mm 36 mm 137 T/m 107 mm 77% 73% 0.03 T 0.8 T/m 0.016 T 0.5 T/m 200

Main Ring RF SPL type cavities: 120 cavities 721.4 MHz in total 500 MV 9.8 MV/m (conservative assumpt., SPL assumes 25 MV/m) 8 double cell cavities in 12 m cryomodules, 15 cryomodules total ->180 m + space for quads etc. feed two cavities with one 1 MW klystron UJ 2 7 RA2 7 UJ 2 6 UJ 3 2 UJ 3 3 RE 28 TZ3 2 UX2 5 P o in t 3.3 P Z 3 3 RZ3 3 RE 32 P X2 4 UJ 2 4 P M3 2 UA2 7 Point 2 P GC2 UL 26 P M2 5 UP 2 5 US 2 5 e p P o in t 3.2 2 3 cryomodules = 2 36 m 2 12 klystrons RA2 3 RH2 3 UL 24 UJ 2 2 RE 38 UW 2 5 UA2 3 UJ 23 TI 2 UJ 4 3 RE 42 RE 22 PMI 2 RE 18 Point 4 RA4 3 RT 18 UA4 3 P Z4 5 UX4 5 UJ 4 4 UL4 4 P o in t 1.8 PM 18 P X1 6 UJ 1 8 RR1 7 UJ 1 7 UL1 6 TI 1 8 UJ 1 6 ATLAS P M4 5 US 4 5 UW 4 5 US A1 5 P X4 6 TX4 6 UL4 6 S P S UJ 4 6 Point 1 P X1 5 RF P M1 5 UX1 5 P X1 4 RA4 7 UA4 7 US 1 5 UL1 4 UJ 1 4 e-injector 9 cryomodules = 108 m 36 klystrons TI 1 2 UJ 4 7 UJ 1 3 RR1 3 N LS S 4 RT1 2 RE 48 RE 52 UJ 12 RR 53 TT 40 PGC 8 UJ 5 3 TJ 8 UL 54 TI 8 UP 5 3 RZ5 4 UXC5 5 RE 12 RE 88 P M5 4 US C5 5 UJ 88 UJ 5 6 1 CMS Point 5 UJ 8 7 RH 87 P X5 6 RF UA8 7 P M5 6 UJ 5 6 UL5 6 TU5 6 UW 8 5 RA 87 Point 8 US 85 UL 86 UJ 86 PM 85 UJ 5 7 RR 57 RE 58 RE 62 P Z8 5 UL 84 UX 85 UP 62 P X8 4 UD 62 TD 62 UJ 62 UJ 63 UA6 3 UJ 6 4 TX8 4 UL6 4 RA6 3 P M6 5 P X6 4 P Z6 5 UL6 6 UW 6 5 US 6 5 UA6 7 UJ 6 7 UA 83 UJ 8 4 RA8 3 Point 7 P M7 6 RE 78 RE 82 UJ 83 UJ 8 2 Point 6 TZ7 6 TX6 4 UX6 5 UJ 6 6 LEP LHC LHeC RA6 7 RR7 7 RE 68 RE 72 UJ 6 8 TD6 8 UJ 7 6 RR7 3 UD6 8 UP 68

Cryogenics Bypasses: Cryogenic requirements: SPL type cryomodules three cryoplants (like LHC/ LEP2) 2 K operation Total electrical power: approx. 5 MW '()*+,&-.&/)0-%-123!4& /)0-53$+(& 8;:&#!$%& :)0-&53$+(&!"#!$%& '()*+,&-.&/)0-%-123!4& 0.6 GeV from EPA 6786'&& 1!(!/(-)& /$9!)+& 6.87 GeV 3.73 GeV 4 ILC RF-units, 156 m, providing 3.13 GV 10 GeV to LHeC ~20 m Injector: Cryogenic requirements: 12 ILC (XFEL) type cryomodules one cryoplant of modest size 2 K operation

Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam)

Summary Challenges: Integration (bypasses around the remaining p- experiments + e-ring integration into existing LHC tunnel) Main arc dipole magnet design (low field and high field quality dipole magnet) Interaction region (beam separation) Final focus proton magnets (quadrupoles with field free regions for the electron beam) High luminosity ep/a-collisions reachable with proven technology

THANK YOU FOR YOUR ATTENTION

Basic Refrigerator Layout D-&!%(.7=-&!"#$%&'()*# B.()9':(;&(>&7##&& %-4"-.7%9.-&#-G-#1&>.(4& HII&J&%(&CI&J&,""-.& '(#)&*(+& 67.4& '(4".-11(.1&?$;1"$.7:(;@&>.(4&/ABC& 7;)&/D3&'.<(=-;$'1& 2!-.=-E&F-.7.)E&,)(5&!"#$%&'(#)&*(+& /(0-.&'(#)&*(+-1&& 23(#)&'(4".-11(.15& B.()9':(;&(>&C&J& 2K7;)-4&'(#)&*(+-1L&M.& M;-&#7.=-&N2O5&P6&Q&C&J&& %"+*&,&-%"+# 8$1%.$*9:(;&*(+&!9""#<&%(&1%.$;=&(>&'.<(4()9#-1&

Polarization Polarization of 25% to 40% at 60 GeV can be reasonably aimed for with harmonic closed orbit spin matching precision alignment of the magnets to better of 150 µm rms needed to achieve a high polarization level option of having siberian snakes

Synchrotron Radiation IR 1 Degree e - Power [kw] critical energy [kev] DL 13.9 118 QL2 6.2 318 QL1 5.4 294 QR1 5.4 293 QR2 6.3 318 DR 13.9 118 Total/ Avg 51.1 163

Synchrotron Radiation IR 10 Degree e - Power [kw] critical energy [kev] DL 6.4 71 QL3 5.3 308 QL2 4.3 218 QL1 0.6 95 QR1 0.6 95 QR2 4.4 220 QR3 5.2 310 DR 6.4 71 Total/ Avg 33.2 126

Main Ring Lattice Parameters Beam Energy 60 GeV Numb. of Part. per Bunch 2.0 10 10 Numb. of Bunches 2808 Circumference 26658.8832 m Syn. Rad. Loss per Turn 437.2 MeV Power 43.72 MW Damping Partition J x /J y /J e 1.5/1/1.5 Damping Time τ x 0.016 s Damping Time τ y 0.025 s Damping Time τ e 0.016 s Polarization Time 61.71 min Coupling Constant κ 0.5 Horizontal Emittance (no coupling) 5.53 nm Horizontal Emittance (κ = 0.5) 4.15 nm Vertical Emittance (κ = 0.5) 2.07 nm RF Voltage V RF 500 MV RF frequency f RF 721 MHz Bunch Length 6.88 mm Max. Hor. Beta 141.94 m Max. Ver. Beta 138.43 m 84.0 83.8 83.6 83.4 83.2 1 Deg 10 Deg possible working point 122.2 122.4 122.6 122.8 123.0 123<Qx<24 83<Qy<84