Chapter 2. The Chemical Context of Life

Similar documents
The Chemical Context of Life

CHAPTER 2: THE CHEMICAL CONTEXT OF LIFE AP Biology CASE STUDY: DEVIL S GARDEN MATTER. Figs. 2.1 & 2.2. Fig. 2.3

Concept 2.1: Matter consists of chemical elements in pure form and in combinations called compounds

The Chemical Context of Life

The Chemical Context of Life

The Chemical Context of Life

The Chemical Context of Life

The Chemical Context of Life

The Chemical Context of Life

BIOLOGY. The Chemical Context of Life CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

The Chemical Context of Life

The Chemical Context of Life

You will be able to: Copyright 2008 Pearson Education, Inc., publishing as Benjamin Cummings

The Chemical Context of Life

The Chemical Context of Life

2 The Chemical Context of Life

Biotech 2: Atoms and Molecules OS Text Reading pp Electron cloud Atoms & Nucleus 2e Subatomic Particles Helium Electron cloud

Ch. 2 Chemical Context of Life BIOL 222

Ch. 2 Chemical Context of Life BIOL 222

Compounds Bonded Elements Made up of two or more Types of atoms bonded together In a fixed ratio NEW SUBSTANCE Different Properties

REVIEW element compound atom Neutrons Protons Electrons atomic nucleus daltons atomic number mass number Atomic mass

Lecture 2: The Chemistry of Life

Chapter 2: The Chemical Context of Life. AP Biology

Chemistry Review CHAPTER 2 IN TEXT

AP Biology. Chapter 2

The Chemical Context of Life

The Chemical Basis of Life

Chemistry of Life 9/16/15. Chemistry s Building Block: The Atom. Ch 2 BIOL 160

Can you see atoms? M

Chapter 2 The Chemical Context of Life

CHAPTERS 2 & 3 The Chemical Context of Life. Chapter 2: Atoms and Molecules Chapter 3: Water & ph

Covalent Bonds. single bond, or single covalent bond. sharing of one pair of valence electrons. double bond, or double covalent bond

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 2. Particle Charge Mass Location

Campbell Biology, 11e (Urry) Chapter 2 The Chemical Context of Life. 2.1 Multiple-Choice Questions

Campbell's Biology, 9e (Reece et al.) Chapter 2 The Chemical Context of Life

Chapter 1: The Biochemical Basis of life pg : The Fundamental Chemistry of Life pg. 8 18

Chapter 2: Atoms and Molecules

General Chemistry Notes Name

Chapter 2 The Chemical Basis of Life

Chapter 2 The Chemical Basis of Life

The Molecules of Cells (Part A: Chemistry)

2-1 The Nature of Matter

Chapter 2 Notes The Chemistry of Life

Human Biology Chapter 2.2: The Building Blocks of Molecules *

SBI4U BIOCHEMISTRY. Atoms, Bonding & Molecular Polarity

1.1 The Fundamental Chemistry of life

THE CHEMISTRY OF LIFE. The Nature of Matter

Chapter 2. Atomic Structure

2-1 The Nature of Matter

BIOLOGY. The Chemical Context of Life. Outline. Why study Chemistry? The Elements of Life. Definitions and the Basics

Name Date. Chapter 2 - Chemistry Guide Microbiology (MCB 2010C) Part 1

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge)

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

Atoms with a complete outer shell do not react with other atoms. The outer shell is called the valence shell. Its electrons are valence electrons.

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together

THE CHEMISTRY OF LIFE

Atomic Structure. The center of the Atom is called the Nucleus

The Chemistry of Life Chapter 2. Prof. J. Dodd

Life s Chemical Basis

Life is a chemical process

Essential Chemistry for Biology

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles.

BIOLOGY 101. CHAPTERS 1 and 2: Introduction, and The Chemical Context of Life:

8/24/2018. Bio 1101 Lecture 2 (guided) Chapters 2: Essential Chemistry. Chapter 2: Essential Chemistry for Biology

Chapter 3. Chemistry of Life

Chemistry Vocabulary. These vocabulary words appear on the Chemistry CBA in addition to being tested on the Chemistry Vocabulary Test.

2 The Chemical Context of Life

CHAPTER 2. Life s Chemical Basis

Chapter 2: Chemical Basis of Life

Chapter 2. The Chemical Basis of Life. Lecture by Richard L. Myers

Quarter 1 Section 1.2

Introduction. Atom is made up of protons, electrons and neutrons. Electrons revolving in concentric circles around nucleus in fixed orbitals

Campbell Biology Canadian 1st Edition Reece TEST BANK

Chapter 2: The Chemical Context of Life

Chapter 2 The Chemical Basis of Life

Chapter 2 pt 1. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

CHAPTER 3 ATOMS ATOMS MATTER 10/17/2016. Matter- Anything that takes up space (volume) and has mass. Atom- basic unit of matter.

PRACTICE PACKET Basic Chemistry

Essential Organic Chemistry. Chapter 1

Electronic Structure of Atoms and the Periodic table. Electron Spin Quantum # m s

Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

The Chemical Context of Life

I. ELEMENTS & ATOMS: Name: Period: Date:

General Chemistry. Lecture 3

Biochemistry THE FUNDAMENTAL CHEMISTRY OF LIFE

Regents review Atomic & periodic

4. A hydrogen bond is formed between a hydrogen atom and a negative atom, usually a nitrogen or oxygen.

Science Class 9 th ATOMS AND MOLECULES. Symbols of Atoms of Different Elements. Atomic Mass. Molecules. Ions. Mole Concept. Finish Line & Beyond

Chemistry (Refresher)

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light)

Bonding Practice Exam

Indicate the answer choice that best completes the statement or answers the question.

V. Weak chemical bonds play important roles in the chemistry of life A. Hydrogen Bonds

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds.

Name: 1. The mass of a proton is approximately equal to the mass of (1) an alpha particle (2) a beta particle (3) a positron (4) a neutron

1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom.

Bonding Mrs. Pugliese. Name March 02, 2011

Biology. Slide 1 of 40. End Show. Copyright Pearson Prentice Hall

Chapter 02 The Chemical Basis of Life I: Atoms, Molecules, and Water

Transcription:

Chapter 2 The Chemical Context of Life 1

Matter Takes up space and has mass Exists as elements (pure form) and in chemical combinations called compounds 2

Elements Can t be broken down into simpler substances by chemical reaction Composed of atoms Essential elements in living things include carbon C, hydrogen H, oxygen O, and nitrogen N making up 96% of an organism 3

Other Elements A few other elements Make up the remaining 4% of living matter Table 2.1 4

Deficiencies If there is a deficiency of an essential element, disease results Figure 2.3 (a) Nitrogen deficiency (b) Iodine deficiency (Goiter) 5

Trace Elements Trace elements Are required by an organism in only minute quantities Minerals such as Fe and Zn are trace elements 6

Compounds Are substances consisting of two or more elements combined in a fixed ratio Have characteristics different from those of their elements + Figure 2.2 Sodium Chloride Sodium Chloride 7

Properties of Matter An element s properties depend on the structure of its atoms Each element consists of a certain kind of atom that is different from those of other elements An atom is the smallest unit of matter that still retains the properties of an element 8

Subatomic Particles Atoms of each element Are composed of even smaller parts called subatomic particles Neutrons, which have no electrical charge Protons, which are positively charged Electrons, which are negatively charged 9

Subatomic Particle Location Protons and neutrons Are found in the atomic nucleus Electrons Surround the nucleus in a cloud 10

Simplified models of an Atom Cloud of negative charge (2 electrons) Electrons Nucleus Figure 2.4 (a) This model represents the electrons as a cloud of negative charge, as if we had taken many snapshots of the 2 electrons over time, with each dot representing an electron s position at one point in time. (b) In this even more simplified model, the electrons are shown as two small blue spheres on a circle around the nucleus. 11

Atomic Number & Atomic Mass Atoms of the various elements Differ in their number of subatomic particles The number of protons in the nucleus = atomic number The number of protons + neutrons = atomic mass Neutral atoms have equal numbers of protons & electrons (+ and charges) 12

Atomic Number Is unique to each element and is used to arrange atoms on the Periodic table Carbon = 12 Oxygen = 16 Hydrogen = 1 Nitrogen = 17 13

Atomic Mass Is an approximation of the atomic mass of an atom It is the average of the mass of all isotopes of that particular element Can be used to find the number of neutrons (Subtract atomic number from atomic mass) 14

Isotopes Different forms of the same element Have the same number of protons, but different number of neutrons May be radioactive spontaneously giving off particles and energy May be used to date fossils or as medical tracers 15

APPLICATION Scientists use radioactive isotopes to label certain chemical substances, creating tracers that can be used to follow a metabolic process or locate the substance within an organism. In this example, radioactive tracers are being used to determine the effect of temperature on the rate at which cells make copies of their DNA. TECHNIQUE 1 2 Ingredients including Radioactive tracer Incubators (bright blue) Human cells Ingredients for making DNA are added to human cells. One ingredient is labeled with 3H, a radioactive isotope of hydrogen. Nine dishes of cells are incubated at different temperatures. The cells make new DNA, incorporating the radioactive tracer with 3H. The cells are placed in test tubes, their DNA is isolated, and unused ingredients are removed. 1 1 2 3 10 C 15 C 20 C 4 5 6 25 C 30 C 35 C 7 8 9 40 C 45 C 50 C DNA (old and new) 2 3 4 5 6 7 8 9 16

Counts per minute (x 1,000) A solution called scintillation fluid is added to the test 3 tubes and they are placed in a scintillation counter. As the 3H in the newly made DNA decays, it emits radiation that excites chemicals in the scintillation fluid, causing them to give off light. Flashes of light are recorded by the scintillation counter. The frequency of flashes, which is recorded as counts per minute, RESULTS is proportional to the amount of the radioactive tracer present, indicating the amount of new DNA. In this experiment, when the counts per minute are plotted against temperature, it RESULTS is clear that temperature affects the rate of DNA synthesis the most DNA was made at 35 C. 30 20 10 0 Optimum temperature for DNA synthesis 10 20 30 40 50 Temperature ( C) Figure 2.5 17

Other uses Can be used in medicine to treat tumors Cancerous throat tissue e 2.6 18

Energy Levels of Electrons An atom s electrons Vary in the amount of energy they possess Electrons further from the nucleus have more energy Electron s can absorb energy and become excited Excited electrons gain energy and move to higher energy levels or lose energy and move to lower levels 19

Energy Energy Is defined as the capacity to cause change Potential energy - Is the energy that matter possesses because of its location or structure Kinetic Energy - Is the energy of motion 20

Electrons and Energy The electrons of an atom Differ in the amounts of potential energy they possess Figure 2.7A (a) A ball bouncing down a flight of stairs provides an analogy for energy levels of electrons, because the ball can only rest on each step, not between steps. 21

Energy Levels Are represented by electron shells Third energy level (shell) Second energy level (shell) Energy absorbed First energy level (shell) Atomic nucleus Energy lost Figure 2.7B (b) An electron can move from one level to another only if the energy it gains or loses is exactly equal to the difference in energy between the two levels. Arrows indicate some of the step-wise changes in potential energy that are possible. 22

Electron Configuration and Chemical Properties The chemical behavior of an atom Is defined by its electron configuration and distribution K (2e-) L-M (8e-) 23

Question What is the electron configuration of these atoms? Carbon Nitrogen Sulfur 24

Periodic table Shows the electron distribution for all the elements First shell Hydrogen 1H Atomic mass 2 He 4.00 Atomic number Element symbol Electron-shell diagram Helium 2He Lithium 3Li Beryllium 4Be Boron 3B Carbon 6C Nitrogen 7N Oxygen 8O Fluorine 9F Neon 10Ne Second shell Third shell Sodium 11Na Magnesium 12Mg Aluminum 13Al Silicon 14Si Phosphorus 15P Sulfur 16S Chlorine 17Cl Argon 18Ar gure 2.8 25

Why do some elements react? Valence electrons Are those in the outermost, or valence shell Determine the chemical behavior of an atom 26

Electron Orbitals An orbital Is the three-dimensional space where an electron is found 90% of the time 27

Electron Orbitals Each electron shell Consists of a specific number of orbitals Electron orbitals. Each orbital holds up to two electrons. x Y Electron-shell diagrams. Each shell is shown with its maximum number of electrons, grouped in pairs. Z 1s orbital 2s orbital Three 2p orbitals 1s, 2s, and 2p orbitals Figure 2.9 (a) First shell (maximum 2 electrons) (b) Second shell (maximum 8 electrons) (c) Neon, with two filled shells (10 electrons) 28

Chemical Bonding 29

Covalent Bonds Sharing of a pair of valence electrons 1 In each hydrogen atom, the single electron is held in its orbital by its attraction to the proton in the nucleus. Hydrogen atoms (2 H) + + Examples: H 2 2 When two hydrogen atoms approach each other, the electron of each atom is also attracted to the proton in the other nucleus. + + 3 The two electrons become shared in a covalent bond, forming an H 2 molecule. Figure 2.10 + + Hydrogen molecule (H 2 ) 30

Covalent Bonding A molecule Consists of two or more atoms held together by covalent bonds A single bond Is the sharing of one pair of valence electrons A double bond Is the sharing of two pairs of valence electrons 31

Multiple Covalent Bonds Name (molecular formula) Electronshell diagram Structural formula Spacefilling model (a) Hydrogen (H 2 ). Two hydrogen atoms can form a single bond. H H (b) Oxygen (O 2 ). Two oxygen atoms share two pairs of electrons to form a double bond. O O Figure 2.11 A, B 32

Compounds & Covalent Bonds Name (molecular formula) Electronshell diagram Structural formula Spacefilling model (c) Water (H 2 O). Two hydrogen atoms and one oxygen atom are joined by covalent bonds to produce a molecule of water. O H H (d) Methane (CH 4 ). Four hydrogen atoms can satisfy the valence of one carbon atom, forming methane. H H C H H Figure 2.11 C, D 33

Covalent Bonding Electronegativity Is the attraction of a particular kind of atom for the electrons in a covalent bond The more electronegative an atom The more strongly it pulls shared electrons toward itself 34

Covalent Bonding In a nonpolar covalent bond The atoms have similar electronegativiti es Share the electron equally 35

Covalent Bonding In a polar covalent bond The atoms have differing electronegativities Share the electrons unequally Because oxygen (O) is more electronegative than hydrogen (H), shared electrons are pulled more toward oxygen. d O This results in a partial negative charge on the oxygen and a partial positive charge on the hydrogens. Figure 2.12 H H d+ d+ H 2 O 36

Ionic Bonds In some cases, atoms strip electrons away from their bonding partners Electron transfer between two atoms creates ions Ions Are atoms with more or fewer electrons than usual Are charged atoms 37

Ions An anion Is negatively charged ions A cation Is positively charged 38

Ionic Bonding An ionic bond Is an attraction between anions and cations 1 The lone valence electron of a sodium 2 Each resulting ion has a completed atom is transferred to join the 7 valence electrons of a chlorine atom. valence shell. An ionic bond can form between the oppositely charged ions. + Na Cl Na Cl Figure 2.13 Na Sodium atom (an uncharged atom) Cl Chlorine atom (an uncharged atom) Na + Sodium on (a cation) Cl Chloride ion (an anion) Sodium chloride (NaCl) 39

Ionic Substances Ionic compounds Are often called salts, which may form crystals Figure 2.14 Na + Cl 40

Weak Chemical Bonds Several types of weak chemical bonds are important in living systems 41

Hydrogen Bonds A hydrogen bond Forms when a hydrogen atom covalently bonded to one electronegative atom is also attracted to another electronegative atom d d + Figure 2.15 Water (H 2 O) Ammonia (NH 3 ) H O H d + d N H H d+ H d+ d + A hydrogen bond results from the attraction between the partial positive charge on the hydrogen atom of water and the partial negative charge on the nitrogen atom of ammonia. 42

Van der Waals Interactions Van der Waals interactions Occur when transiently positive and negative regions of molecules attract each other 43

Weak Bonds Weak chemical bonds Reinforce the shapes of large molecules Help molecules adhere to each other 44

Molecular Shape and Function Structure determines Function! The precise shape of a molecule Is usually very important to its function in the living cell Is determined by the positions of its atoms valence orbitals 45

Orbitals & Covalent Bonds In a covalent bond The s and p orbitals may hybridize, creating specific molecular shapes Z Three p orbitals Four hybrid orbitals s orbital X Y Tetrahedron (a) Hybridization of orbitals. The single s and three p orbitals of a valence shell involved in covalent bonding combine to form four teardrop-shaped hybrid orbitals. These orbitals extend to the four corners of an imaginary Figure 2.16 (a) tetrahedron (outlined in pink). 46

Orbitals & Covalent Bonds Space-filling model Ball-and-stick model Unbonded Electron pair Hybrid-orbital model (with ball-and-stick model superimposed) O O Water (H 2 O) H 104.5 H H H H H H C H H C H Methane (CH 4 ) H H (b) Molecular shape models. Three models representing molecular shape are shown for two examples; water and methane. The positions of the hybrid orbital Figure 2.16 (b) determine the shapes of the molecules 47

Shape and Function Molecular shape Determines how biological molecules recognize and respond to one another with specificity 48

Natural endorphin Carbon Nitrogen Hydrogen Sulfur Oxygen Morphine (a) Structures of endorphin and morphine. The boxed portion of the endorphin molecule (left) binds to receptor molecules on target cells in the brain. The boxed portion of the morphine molecule is a close match. Natural endorphin Morphine Figure 2.17 Brain cell Endorphin receptors (b) Binding to endorphin receptors. Endorphin receptors on the surface of a brain cell recognize and can bind to both endorphin and morphine. 49

Chemical Reactions Chemical reactions make and break chemical bonds A Chemical reaction Is the making and breaking of chemical bonds Leads to changes in the composition of matter 50

Chemical Reactions Chemical reactions Convert reactants to products + 2 2 H 2 + O 2 H 2 O Reactants Reaction Product 51

Chemical Reactions Photosynthesis Is an example of a chemical reaction Figure 2.18 52

Chemical Reactions Chemical equilibrium Is reached when the forward and reverse reaction rates are equal 53

54