Testing General Relativity with Atom Interferometry

Similar documents
Fundamental Physics with Atomic Interferometry

New Searches for Subgravitational Forces

Lecture 21: General Relativity Readings: Section 24-2

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Do You Need to Understand General Relativity to Understand Gravitation?

Relativity. Astronomy 101

Monday, October 10, 2011

Neutron-star mergers in scalartensor theories of gravity

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past

Challenges in Cosmology and why (may be) Modified Gravity

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Gravitational tests using simultaneous atom interferometers

Testing Genaral Relativity 05/14/2008. Lecture 16 1

Outline. General Relativity. Black Holes as a consequence of GR. Gravitational redshift/blueshift and time dilation Curvature Gravitational Lensing

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26

Testing gravitation in the Solar System with radio-science experiments

Experimental Tests and Alternative Theories of Gravity

Post-Keplerian effects in binary systems

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY

2 Post-Keplerian Timing Parameters for General Relativity

Pressuron's phenomenology

Einstein s Theory of Gravity. December 13, 2017

Postulate 2: Light propagates through empty space with a definite speed (c) independent of the speed of the source or of the observer.

Advanced accelerometer/gradiometer concepts based on atom interferometry

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Tests of fundamental physics using atom interferometry

The interpretation is that gravity bends spacetime and that light follows the curvature of space.

Past and Future General Relativity Experiments: Equivalence Principle, Time Delay, and Black Holes. Irwin Shapiro 21 October 2005

imin...

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

Why Was Einstein Wrong? is the Wrong Question

D. f(r) gravity. φ = 1 + f R (R). (48)

Measuring the Whirling of Spacetime

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum

Gravity with the SKA

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Tests of General Relativity from observations of planets and spacecraft

arxiv:physics/ v2 [physics.gen-ph] 2 Dec 2003

arxiv:gr-qc/ v1 15 Mar 1999

Einstein s Equations. July 1, 2008

Gravity: Newtonian, post-newtonian Relativistic

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France)

The Laser Astrometric Test Of Relativity Mission

Tests of cosmological gravity

Preparation of the data analysis of the gravitational wave space antenna.

Precision atom interferometry in a 10 meter tower

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

8. The Expanding Universe, Revisited

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

7/5. Consequences of the principle of equivalence (#3) 1. Gravity is a manifestation of the curvature of space.

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

Gravitational Wave Astronomy Suggested readings: Camp and Cornish, Ann Rev Nucl Part Sci 2004 Schutz, gr-qc/ Kip Thorne WEB course

Physics 120 Quantum Physics and Beyond Today!

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3.

Dark Energy to Modified Gravity

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay (associate researcher IAP)

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Precision Tests of General Relativity in Space

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

arxiv: v1 [gr-qc] 4 Sep 2012

Synergizing Screening Mechanisms on Different Scales

Chapter 26. Relativity

( ) 2 1 r S. ( dr) 2 r 2 dφ

Mach, Thirring & Lense, Gödel - getting dizzy in space-time

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1)

Constraints on the deviations from general relativity

arxiv: v2 [gr-qc] 6 Jan 2009

EPM the high-precision planetary ephemerides of IAA RAS for scientific research, astronavigation on the Earth and space

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

Some basic issues concerning quantum mechanics and gravity

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay

Apr 14, Calculus with Algebra and Trigonometry II Lecture 20More physics Aprapplications

Binary Pulsars and Evidence for Gravitational Radiation

Sensitivity limits of atom interferometry gravity gradiometers and strainmeters. Fiodor Sorrentino INFN Genova

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland

A873: Cosmology Course Notes. II. General Relativity

Dark Energy & General Relativity «Some theoretical thoughts»

Advanced Newtonian gravity

Aspects of the General Theory of Relativity

Astronomy 182: Origin and Evolution of the Universe

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17

Curved Spacetime III Einstein's field equations

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

12:40-2:40 3:00-4:00 PM

Gravitational Waves Theory - Sources - Detection

Searches for Local Lorentz Violation

Radio Science Techniques for Solar System Tests of General Relativity

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance

1 Introduction. 1.1 Notations and conventions

Equivalence Principle Violations and Couplings of a Light Dilaton

Keywords: Golden metric tensor, Geodesic equation, coefficient of affine connection, Newton s planetary equation, Einstein s planetary equation.

Ghost Bounce 鬼跳. Chunshan Lin. A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arxiv:1007.

Lecture: Principle of Equivalence

Transcription:

Testing General lativity with Atom Interferometry Savas Dimopoulos with Peter Graham Jason Hogan Mark Kasevich

Testing Large Distance GR Cosmological Constant Problem suggests Our understanding of GR is incomplete (unless there are ~10 500 universes!) CCP+DM inspired proposals for IR modifications: Damour-Polyakov DGP ADDG (non-locality) Ghost condensation... MOND Beckenstein... Brans-Dicke Bimetric...

Precision long distance tests GR: Principle of Equivalence tested to 3 10-13 most other tests ~ 10-3 to 10-5 time delay (Cassini tracking) light deflection (VLBI) perihelion shift Nordtvedt effect Lense-Thirring (GPB) 10-5 10-3 10-3 10-3 QED: 10 digit accuracy g-2, EDMs, etc

Precision GR tests mostly use: Planets and photons over astronomical distances Can we study GR using atoms over short distances (meters)?

Precision GR tests mostly use: Planets and photons over astronomical distances Can we study GR using atoms over short distances (meters)? Yes, thanks to the tremendous advances in Atom Interferometry Unprecedented Precision (see Nobel Lectures 97, 01, 05 ) Several control variables (v, t, ω, h) We are at crossroads where atoms may compete with astrophysical tests of GR

An old idea Atom Interferometry can measure minute forces Galileo Current Future g 10 11 g 10 17 g A.Peters

An old idea Atom Interferometry can measure minute forces Galileo Current Future g 10 11 g 10 17 g dv dt = φ + GR A.Peters φ = G N M e R e

Outline Post Newtonian General lativity Atom Interferometry Preliminary estimates

Post-Newtonian Approximation Expansion in potential and velocity Small Numbers Atom velocity: v atoms 10 m sec 3 10 8 Earth s potential: φ = G NM earth R earth 1 2 10 9 Gradient: height R earth 10 m 6 10 6 m 1 6 10 5

Particle equation of motion φ ψ ζ Newtonian Gravitational Potential Kinetic Energy Gravitational Potential Rotational Energy Gravitational Potential d v dt = (φ + 2φ2 + ψ) ζ t + v ( ζ) +3 v φ t + 4 v( v )φ v2 φ scalar potential vector potential

Non-abelian gravity In empty space Newton g = 2 φ = 4πG N ρ = 0 d v dt = (φ + 2φ2 + ψ) ζ t + v ( ζ) Einstein 2 δφ = ( φ) 2 2 φ 2 δφ φ 2 = g 0 +3 v φ t + 4 v( v )φ v2 φ

Non-abelian gravity In empty space Newton g = 2 φ = 4πG N ρ = 0 Einstein 2 δφ = ( φ) 2 2 φ 2 δφ φ 2 = g 0 d v dt = (φ + 2φ2 + ψ) ζ t + v ( ζ) +3 v φ t + 4 v( v )φ v2 φ Effect 10 9 g only gradient measurable 10 15 g

Kinetic Energy Gravitates v 2 φ + 4 v( v )φ Effect v 2 atomsg 10 15 g d v dt = (φ + 2φ2 + ψ) ζ t + v ( ζ) +3 v φ t + 4 v( v )φ v2 φ

General lativity effects on equation of motion d v dt = (φ + 2φ2 + ψ) ζ t + v ( ζ) +3 v φ t + 4 v( v )φ v2 φ

General lativity effects on equation of motion d v dt = (φ + 2φ2 + ψ) ζ t + v ( ζ) 1 10 9 +3 v φ t + 4 v( v )φ v2 φ

d v General lativity effects on equation of motion dt = (φ + 2φ2 + ψ) ζ 1 10 9 10 15 t + v ( ζ) +3 v φ t + 4 v( v )φ v2 φ

d v General lativity effects on equation of motion dt = (φ + 2φ2 + ψ) ζ 1 10 9 t + v ( ζ) 0 10 15 10 13 +3 v φ t + 4 v( v )φ v2 φ

d v General lativity effects on equation of motion dt = (φ + 2φ2 + ψ) ζ 1 10 9 t + v ( ζ) 0 10 15 10 13 +3 v φ t + 4 v( v )φ v2 φ 0 10 15

d v General lativity effects on equation of motion dt = (φ + 2φ2 + ψ) ζ 1 10 9 t + v ( ζ) 0 10 15 10 13 +3 v φ t + 4 v( v )φ v2 φ 0 10 15 Can these terms be measured in the lab?

Light Interferometry beamsplitter output ports mirror accurate measurement of y beamsplitter mirror L L λ L (phase resolution) x

Atom Interferometry 2T t beamsplitter output ports T mirror mirror 0 beamsplitter similar to light interferometer but arms are separated in space-time instead of space-space r

Atom Interferometry 2T t beamsplitter output ports T mirror mirror 0 beamsplitter similar to light interferometer but arms are separated in space-time instead of space-space r

Atom Interferometry 2T t beamsplitter output ports T mirror mirror 0 beamsplitter similar to light interferometer but arms are separated in space-time instead of space-space r

Atom Interferometry 2T t beamsplitter output ports T mirror mirror 0 beamsplitter similar to light interferometer but arms are separated in space-time instead of space-space r

Atom Interferometry 2T t beamsplitter output ports T mirror mirror 0 beamsplitter similar to light interferometer but arms are separated in space-time instead of space-space r

Atom Interferometry t 2T T 0 use lasers as beamsplitters and mirrors r

Atom Interferometry t 2T T 0 r slow atoms fall more under gravity and the interferometer can be as long as 1 sec ~ earth-moon distance!

Raman Transition ω 1 ω 2 Ω 1 Ω 2 k e f f ω 2 1,p 2,p k k e f f = ω 1 + ω 2 1 ev ω e f f = ω 1 ω 2 10 5 ev

Raman Transition ψ = c 1 1, p + c 2 2, p + k c 1 2, c 2 2 1 Ω 1 Ω 2 1 2 1,p 2,p k 1,p 2,p k Π 2 Π 3 Π 2 2 Π t Rabi 1 π/2 pulse is a beamsplitter π pulse is a mirror

AI Phase Shifts Total phase difference comes from three sources: φ tot = φ propagation + φ laser + φ separation

Propagation Phase φ tot = φ propagation + φ laser + φ separation φ propagation = mdτ = Ldt = p µ dx µ integral taken over each arm of interferometer t 2T T 0 r

Laser Phase φ tot = φ propagation + φ laser + φ separation φ laser = vertices (phase of laser) out H int in = out µ E 0 e i k x in the laser imparts a phase to the atom just as a mirror or beamsplitter imparts a phase to light

Separation Phase 2T t x µ φ separation = x µ p ν dx ν T 0 r

Measuring Gravity a constant gravitational field produces a phase shift: t 2T T φ propagation = ( ) 1 2 mv2 mgh dt 0 r φ propagation = mg (area) = mg k m T T φ tot = kgt 2 10 8 radians

Gravity Phases GkMT 2 2 2GkMT 3 v L 3 GMT 2 ω R 2 e GMT 2 ω A R 2 e 7G 2 km 2 T 4 6R 5 e 3GkMT 2 v L 2 3G2 km 2 T 3 4 Gk2 MT 3 mr 3 e 7GkMT 4 v 2 L 2R 4 e 2GMT 3 ωv L 3 2GMT 3 v L ω A R 3 e 3Gk 2 MT 2 2m 2 G 2 km 2 T 2 3 11G2 km 2 T 5 v L 2 6 7G2 M 2 T 4 ω 6R 5 e 7G 2 M 2 T 4 ω A 6 5 8GkMT 3 v 2 L 3 3GMT 2 ωv L R 2 e 35G 2 km 2 T 4 v L 2R 5 e 5GkMT 2 v 2 L R 2 e 11G2 k 2 M 2 T 5 4mR 6 e 15G2 km 2 T 3 v L R 4 e 1. 10 8 2. 10 3 1. 10 3 1. 10 3 1.16667 10 2 3. 10 1 3. 1. 3.5 10-2 2. 10-2 2. 10-2 1.5 10-2 1. 10-2 5.5 10-3 1.16667 10-3 1.16667 10-3 8. 10-4 3. 10-4 1.75 10-4 5. 10-6 2.75 10-6 1.5 10-6

Gravity Phases GkMT 2 2 2GkMT 3 v L 3 GMT 2 ω R 2 e GMT 2 ω A R 2 e 7G 2 km 2 T 4 6R 5 e 3GkMT 2 v L 2 3G2 km 2 T 3 4 Gk2 MT 3 mr 3 e 7GkMT 4 v 2 L 2R 4 e 2GMT 3 ωv L 3 2GMT 3 v L ω A R 3 e 3Gk 2 MT 2 2m 2 G 2 km 2 T 2 3 11G2 km 2 T 5 v L 2 6 7G2 M 2 T 4 ω 6R 5 e 7G 2 M 2 T 4 ω A 6 5 8GkMT 3 v 2 L 3 3GMT 2 ωv L R 2 e 35G 2 km 2 T 4 v L 2R 5 e 5GkMT 2 v 2 L R 2 e 11G2 k 2 M 2 T 5 4mR 6 e 15G2 km 2 T 3 v L R 4 e 1. 10 8 2. 10 3 1. 10 3 1. 10 3 1.16667 10 2 3. 10 1 3. 1. 3.5 10-2 2. 10-2 2. 10-2 1.5 10-2 1. 10-2 5.5 10-3 1.16667 10-3 1.16667 10-3 8. 10-4 3. 10-4 1.75 10-4 5. 10-6 2.75 10-6 1.5 10-6 non-relativistic constant g NR gravity gradient

Gravity Phases GkMT 2 2 2GkMT 3 v L 3 GMT 2 ω R 2 e GMT 2 ω A R 2 e 7G 2 km 2 T 4 6R 5 e 3GkMT 2 v L 2 3G2 km 2 T 3 4 Gk2 MT 3 mr 3 e 7GkMT 4 v 2 L 2R 4 e 2GMT 3 ωv L 3 2GMT 3 v L ω A R 3 e 3Gk 2 MT 2 2m 2 G 2 km 2 T 2 3 11G2 km 2 T 5 v L 2 6 7G2 M 2 T 4 ω 6R 5 e 7G 2 M 2 T 4 ω A 6 5 8GkMT 3 v 2 L 3 3GMT 2 ωv L R 2 e 35G 2 km 2 T 4 v L 2R 5 e 5GkMT 2 v 2 L R 2 e 11G2 k 2 M 2 T 5 4mR 6 e 15G2 km 2 T 3 v L R 4 e 1. 10 8 2. 10 3 1. 10 3 1. 10 3 1.16667 10 2 3. 10 1 3. 1. 3.5 10-2 2. 10-2 2. 10-2 1.5 10-2 1. 10-2 5.5 10-3 1.16667 10-3 1.16667 10-3 8. 10-4 3. 10-4 1.75 10-4 5. 10-6 2.75 10-6 1.5 10-6 non-relativistic constant g NR gravity gradient Doppler shift

Gravity Phases GkMT 2 2 2GkMT 3 v L 3 GMT 2 ω R 2 e GMT 2 ω A R 2 e 7G 2 km 2 T 4 6R 5 e 3GkMT 2 v L 2 3G2 km 2 T 3 4 Gk2 MT 3 mr 3 e 7GkMT 4 v 2 L 2R 4 e 2GMT 3 ωv L 3 2GMT 3 v L ω A R 3 e 3Gk 2 MT 2 2m 2 G 2 km 2 T 2 3 11G2 km 2 T 5 v L 2 6 7G2 M 2 T 4 ω 6R 5 e 7G 2 M 2 T 4 ω A 6 5 8GkMT 3 v 2 L 3 3GMT 2 ωv L R 2 e 35G 2 km 2 T 4 v L 2R 5 e 5GkMT 2 v 2 L R 2 e 11G2 k 2 M 2 T 5 4mR 6 e 15G2 km 2 T 3 v L R 4 e 1. 10 8 2. 10 3 1. 10 3 1. 10 3 1.16667 10 2 3. 10 1 3. 1. 3.5 10-2 2. 10-2 2. 10-2 1.5 10-2 1. 10-2 5.5 10-3 1.16667 10-3 1.16667 10-3 8. 10-4 3. 10-4 1.75 10-4 5. 10-6 2.75 10-6 1.5 10-6 non-relativistic constant g NR gravity gradient Doppler shift GR φ 2

Gravity Phases GkMT 2 2 2GkMT 3 v L 3 GMT 2 ω R 2 e GMT 2 ω A R 2 e 7G 2 km 2 T 4 6R 5 e 3GkMT 2 v L 2 3G2 km 2 T 3 4 Gk2 MT 3 mr 3 e 7GkMT 4 v 2 L 2R 4 e 2GMT 3 ωv L 3 2GMT 3 v L ω A R 3 e 3Gk 2 MT 2 2m 2 G 2 km 2 T 2 3 11G2 km 2 T 5 v L 2 6 7G2 M 2 T 4 ω 6R 5 e 7G 2 M 2 T 4 ω A 6 5 8GkMT 3 v 2 L 3 3GMT 2 ωv L R 2 e 35G 2 km 2 T 4 v L 2R 5 e 5GkMT 2 v 2 L R 2 e 11G2 k 2 M 2 T 5 4mR 6 e 15G2 km 2 T 3 v L R 4 e 1. 10 8 2. 10 3 1. 10 3 1. 10 3 1.16667 10 2 3. 10 1 3. 1. 3.5 10-2 2. 10-2 2. 10-2 1.5 10-2 1. 10-2 5.5 10-3 1.16667 10-3 1.16667 10-3 8. 10-4 3. 10-4 1.75 10-4 5. 10-6 2.75 10-6 1.5 10-6 non-relativistic constant g NR gravity gradient Doppler shift GR φ 2 GR v 2 φ + 4 v( v )φ

Gravity Phases GkMT 2 2 2GkMT 3 v L 3 GMT 2 ω R 2 e GMT 2 ω A R 2 e 7G 2 km 2 T 4 6R 5 e 3GkMT 2 v L 2 3G2 km 2 T 3 4 Gk2 MT 3 mr 3 e 7GkMT 4 v 2 L 2R 4 e 2GMT 3 ωv L 3 2GMT 3 v L ω A R 3 e 3Gk 2 MT 2 2m 2 G 2 km 2 T 2 3 11G2 km 2 T 5 v L 2 6 7G2 M 2 T 4 ω 6R 5 e 7G 2 M 2 T 4 ω A 6 5 8GkMT 3 v 2 L 3 3GMT 2 ωv L R 2 e 35G 2 km 2 T 4 v L 2R 5 e 5GkMT 2 v 2 L R 2 e 11G2 k 2 M 2 T 5 4mR 6 e 15G2 km 2 T 3 v L R 4 e 1. 10 8 2. 10 3 1. 10 3 1. 10 3 1.16667 10 2 3. 10 1 3. 1. 3.5 10-2 2. 10-2 2. 10-2 1.5 10-2 1. 10-2 5.5 10-3 1.16667 10-3 1.16667 10-3 8. 10-4 3. 10-4 1.75 10-4 5. 10-6 2.75 10-6 GR φ 2 1.5 10-6 non-relativistic constant g NR gravity gradient Doppler shift GR φ 2 GR v 2 φ + 4 v( v )φ

Gravity Phases kgt 2 2 kgt 2 v LT R e 3 kgt 2 v L kgt 2 φ 5 kgt 2 v 2 L 15 kgt 2 v LT R e φ 10 8 2 10 3 3 10 1 10 2 5 10 6 10 6 doppler shift GR terms experimentally controllable parameters are: k, v L, T

Gravity Phases kgt 2 2 kgt 2 v LT R e 3 kgt 2 v L kgt 2 φ 5 kgt 2 v 2 L 15 kgt 2 v LT R e φ 10 8 2 10 3 3 10 1 10 2 5 10 6 10 6 same scalings, measure with gradient experimentally controllable parameters are: k, v L, T

Gravity Phases kgt 2 2 kgt 2 v LT R e 3 kgt 2 v L kgt 2 φ 5 kgt 2 v 2 L 15 kgt 2 v LT R e φ 10 8 2 10 3 3 10 1 10 2 5 10 6 10 6 same scalings g 0 experimentally controllable parameters are: k, v L, T

Gravity Phases kgt 2 2 kgt 2 v LT R e 3 kgt 2 v L kgt 2 φ 5 kgt 2 v 2 L 15 kgt 2 v LT R e φ 10 8 2 10 3 3 10 1 10 2 5 10 6 10 6 unique scaling experimentally controllable parameters are: k, v L, T

Atomic Interferometer 10 m 10 m atom drop tower. currently under construction at Stanford

Atomic Equivalence Principle Test 10 m 10 m atom drop tower.

Atomic Equivalence Principle Test 10 m Co-falling 85 Rb and 87 Rb ensembles 10 m atom drop tower. Will reach accuracy 10 16 Compared to Lunar Laser Ranging 3 10 13

Atomic Equivalence Principle Test 10 m Co-falling 85 Rb and 87 Rb ensembles 10 m atom drop tower. Will reach accuracy 10 16 Compared to Lunar Laser Ranging 3 10 13 Then will test PN GR

Other equivalence principle measurements Atomic Equivalence Principle Test at Stanford 10-15 g 2008 MICROSCOPE 10-15 g 2011 Galileo Galilei 10-17 g launch 2009? STEP 10-17 g?

Can we measure H? Pioneer anomaly? Radio ranging of Pioneer Laser ranging of atoms BUT equivalence principle says only tides measurable and Riemann R H 2 way too small

Can we measure H? Pioneer anomaly? Radio ranging of Pioneer Laser ranging of atoms BUT equivalence principle says only tides measurable and Riemann R H 2 way too small Similarly DM is not measurable But, Sun s radiation pressure is measurable at the 10 17 g level, and causes the earth not to be an inertial frame

GR Experimentation 1916-1920 Precession of Mercury and light bending 1920-1960 Hibernation 1960 - Now Golden Era, many astronomical tests New epoch? High precision atom interferometry allows for greater control and ability to isolate and study individual effects in GR such as 3-graviton coupling and gravitation of kinetic energy

Good to Go!