THE ACOUSTIC POWER RADIATED BY A CIRCULAR MEMBRANE EXCITED FOR VIBRATION BOTH BY MEANS OF THE EDGE AND BY EXTERNAL SURFACE LOAD

Similar documents
Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix

Chapter 2: Complex numbers

r p = r o r cos( φ ) cos( α )

Vibrations of string. Henna Tahvanainen. November 8, ELEC-E5610 Acoustics and the Physics of Sound, Lecture 4

Sound Pressure Generated by a Bubble

. (70.1) r r. / r. Substituting, we have the following equation for f:

Sound Transmission in an Extended Tube Resonator

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

NATURAL FREQUENCIES OF AXISYMMETRIC VIBRATIONS OF THIN HYPERBOLIC CIRCULAR PLATES WITH CLAMPED EDGES

OPAC102. The Acoustic Wave Equation

Spherical Waves, Radiator Groups

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Critical loss factor in 2-DOF in-series system with hysteretic friction and its use for vibration control

1. Reflection and Refraction of Spherical Waves

ACOUSTIC RADIATION OF VIBRATING PLATE STRUCTURES SUBMERGED IN WATER UKASZ NOWAK, TOMASZ G. ZIELI SKI

Point Load Generated Surface Waves in a Transversely Isotropic Half-Space using Elastodynamic Reciprocity

AEROELASTIC ANALYSIS OF COMBINED CONICAL - CYLINDRICAL SHELLS

COPYRIGHTED MATERIAL. Index

Vibro-Acoustics of a Brake Rotor with Focus on Squeal Noise. Abstract

Optimal Location of an Active Segment of Magnetorheological Fluid Layer in a Sandwich Plate

Modeling of a Circular Plate with Piezoelectric Actuators of Arbitrary Shape

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates

Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution

On spherical-wave scattering by a spherical scatterer and related near-field inverse problems

Chapter 2 Acoustical Background

Vibrations of stretched damped beams under non-ideal boundary conditions

ASSESSMENT OF THE APPLICABILITY OF THE WEIGHT VECTOR THEORY FOR CORIOLIS FLOWMETERS

AEROELASTIC ANALYSIS OF SPHERICAL SHELLS

Oscillatory Motion SHM

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

25.2. Applications of PDEs. Introduction. Prerequisites. Learning Outcomes

Phonons I - Crystal Vibrations (Kittel Ch. 4)

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 23, 2018

On determination of microphone response and other parameters by a hybrid experimental and numerical method

International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: Issue 12, Volume 4 (December 2017)

ESTIMATION OF ACOUSTIC LOSSES IN THE QUALITY FACTOR OF A MICROMECHANICAL 2D RESONATOR

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Computing the uncertain vibrations of plates with spatially-extended random excitation using the image source method

Atomic cross sections

Laminated Composite Plates and Shells

Mobility and Impedance Methods. Professor Mike Brennan

221B Lecture Notes on Resonances in Classical Mechanics

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method

A Modal Approach to Lightweight Partitions with Internal Resonators

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

P773 Acoustics June, 2008

SOLAR MHD Lecture 2 Plan

Factors Affecting the Accuracy of Numerical Simulation of Radiation from Loudspeaker Drive Units. P.C.Macey PACSYS Limited

THEORY OF VIBRATION ISOLATION

Sound diffraction by the splitter in a turbofan rotor-stator gap swirling flow

DIFFRACTION CORRECTION OF FREQUENCY RESPONSE FOR LOUDSPEAKER IN RECTANGULAR BAFFLE A. DOBRUCKI

Prediction of noise transmission through infinite panels using a wave and finite element method

Influence of background noise on non-contact vibration measurements using particle velocity sensors

Vibrations of Ideal Circular Membranes (e.g. Drums) and Circular Plates:

Moment of inertia. Contents. 1 Introduction and simple cases. January 15, Introduction. 1.2 Examples

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Unit - 7 Vibration of Continuous System

Chapter 15. Oscillatory Motion

Homework 2: Solutions GFD I Winter 2007

Lecture notes 5: Diffraction

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

Supporting Information

DAMPING OF GENERALIZED THERMO ELASTIC WAVES IN A HOMOGENEOUS ISOTROPIC PLATE

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Fourier transforms, Generalised functions and Greens functions

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method

RF cavities (Lecture 25)

JEPPIAAR ENGINEERING COLLEGE

Waves vibrations. Maxime Nicolas. To cite this version: HAL Id: cel Maxime Nicolas.

Complex Analysis Math 185A, Winter 2010 Final: Solutions

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES

NONLOCAL ANALYSIS OF DYNAMIC INSTABILITY OF MICRO-AND NANO-RODS

Periodic Assembly of Multi-Coupled Beams: Wave Propagation and Natural Modes

Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation

Table of Contents. Preface... 13

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Basics of Electromagnetics Maxwell s Equations (Part - I)

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT:

Estimation of dynamic characteristics of a spring-mass-beam system

Radiation by a dielectric wedge

2.3 Damping, phases and all that

Introduction to Acoustics Exercises

Sound radiation and sound insulation

Members Subjected to Torsional Loads

Proceedings of Meetings on Acoustics

Rocking behaviour of a rigid foundation with an arbitrary embedment

Physics 506 Winter 2004

142. Determination of reduced mass and stiffness of flexural vibrating cantilever beam

Free vibration analysis of elastically connected multiple-beams with general boundary conditions using improved Fourier series method

Research Article Finite Element Formulation of Forced Vibration Problem of a Prestretched Plate Resting on a Rigid Foundation

Static pressure and temperature coefficients of working standard microphones

Numerical study on scanning radiation acoustic field in formations generated from a borehole

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

MAT389 Fall 2016, Problem Set 4

Transcription:

ARCHIVES OF ACOUSTICS 3, 1, 19 119 (25) THE ACOUSTIC POWER RADIATED BY A CIRCULAR MEMBRANE EXCITED FOR VIBRATION BOTH BY MEANS OF THE EDGE AND BY EXTERNAL SURFACE LOAD K SZEMELA, W P RDZANEK Jr, W RDZANEK University of Rzeszów Rejtana 16a, 35-31 Rzeszów, Poland e-mail: alpha@univrzeszowpl (received April 6, 24; accepted October 26, 24) In this paper the acoustic power of the circular membrane, excited both by the edge and external exciting forces uniformly distributed over the whole surface, is examined Some different amplitudes of exciting factors and some differences between the phases of excitations were considered It has been assumed that the source of a sound is located in a flat, rigid and infinite baffle and is sourrounded by a lossless and homogeneous fluid medium The vibrations are axisymmetric and time-harmonic Employing the Cauchy s theorem of residues and asymptotic formulae for the Bessel functions, the asymptotes for active and reactive power consisting of elementary functions are obtained The acoustic power radiated by the membrane was shown graphically in terms of the parameters describing both kinds of excitations Key words: acoustic radiation power, vibrations of a spherical membrane, excitation produced by edge and surface loads, amplitude-phase effects Notations a c H n (1) J n k p(r) P P active P reactive r S s t membrane radius, propagation velocity of a wave in a fluid medium, first kind, n-th order Hankel function, n-th order Bessel function, wave number, acoustic pressure, total sound power radiated by a membrane, active power, reactive power, radial variable of a point on the surface of the membrane in polar coordinates, membrane s area, amplitude of the external excitation force per unit area of the surface, time,

11 K SZEMELA, W P RDZANEK Jr, W RDZANEK T η ρ σ ω streching force per unit length, transverse deflection of membrane s points, rest density of the fluid medium, mass of membrane per unit area, frequency 1 Introduction The analysis of magnitudes determining radiation of surface sound sources such as membranes or plates is very important from the practical point of view The possibility of using purely theoretical results to design an acoustic system, which can exist as damping noise components, is of essential importance We can influence the radiation of source in adiction to surface excitement, a driving force applied to its edge In this way the power of radiation is dependent on both the amplitude of excitation at the edge and on its phase In the paper [5] the abilities of control amplitudes and phases of both clamped edges of annular plate excited at the same time by external surface force were investigated W J RDZANEK, W P RDZANEK JR, Z ENGEL have obtained integral formulae, which determine the dependence of the acoustic power radiated by annular plate on the amplitude of excitation of external edge and stiffness constants associated with the boundary conditions [3] It is very desirable to find elementary formulae describing the influence of parameters connected with a source on the acoustic sound power This problem is mathematically complicated and it is impossible to obtain some formulations for the power valid for all frequencies The analysis of sound power radiated by a circular membrane excited to vibration by the edge and external surface force have not been presented in the literature yet In spite of its simplicity, this problem has a great practical importance because it can be applied to design and build active damping noise systems Making use of Cauchy s theorem, the asymptotes for the sound power were reached in an elementary form The asymptotes determine the dependence of the acoustic power on parameters characterizing the excitations 2 Assumptions The membrane, the radius of which equals a is stretched on the circle by force T referred to unit length Further it was assumed that its mass per unit area of surface is equal to σ The source considered is embedded into a flat, rigid and infinite baffle and vibrations are axisymmetric and time-harmonic with frequency ω (Fig 1) The sound wave is radiated in a homogenous, lossless fluid medium The external exciting force is uniformly distributed on the whole surface of the membrane and is time-harmonic This excitation is mathematically described by F W (t) = se i(ωt+ϕ), (1)

THE ACOUSTIC POWER RADIATED 111 where s is amplitude of excitation referred to unit area of the surface, and ω, ϕ denote frequency and phase The second kind of excitation is produced by means of the edge and can be expressed in the form of w(t) = η e i(ωt+ϕ ) ; (2) by η and ϕ we have denoted amplitude of excitation and its phase, respectively The above equality represents the boundary condition at the edge of membrane Fig 1 The configuration of a vibrating system with both kinds of excitations For time-harmonic and axisymmetric vibrations a transverse deflection can be formulated as η(r, t) = η(r)e iωt, (3) where η(r) is a function determining the value of a transverse deflection s amplitude in terms of the radial distance The equation of motion for the considered source is given by the following formula T r η(r, t) σ 2 η(r, t) t 2 = F W (t), (4) where r is the radial component of operator On the basis of formulae (1), (2), (3), the equation of motion and boundary condition can be presented in the following form [2, 8]: ( T r + ω 2 σ ) η(r) = se iϕ, η(a) = η e iϕ (5) Solving the above equation together with the boundary condition and introducing the following notations: f = s T k 2, k2 = ω2 σ, λ = ka, (6) T

112 K SZEMELA, W P RDZANEK Jr, W RDZANEK we obtain η(r) = ( η e iϕ fe iϕ) J (kr) J (λ) + fe iϕ, (7) where J n is the n-th order Bessel function where 3 The total sound power The acoustic power is calculated according to the definition P = 1/2 p(r)v (r)ds, (8) p(r) = ik cρ 2π S S v(r ) exp(ik r r ) ds (9) r r is the sound pressure, v is the conjugate value for the vibration velocity of membrane s points, r r is the distance from the membrane s point to a point in the soundfield, ρ rest density of fluid medium, k, c correspondingly denote the wave number and propagation velocity, S, S is membrane s area The total sound power radiated by some surface sources can be expressed in its Hankel representation where P = πρ ck 2 a W (x) = iω W (x)w (x)xdx, (1) µ η(r)j (k xr)rdr (11) is the function characterizing a source, µ = 1 x 2 for x 1, µ = i x 2 1 for 1 x [6, 7] On the basis of expression (1), the total sound power can be formulated briefly as P = P active ip reactive, (12) where P active and P reactive denote the active and reactive sound power Substituting the solution of the equation of motion into Eq (11) we get as a result { W (x) = i ωa2 fe iϕ J 1(βx) β x +(η e iϕ fe iϕ ) αδj (βx) xj 1 (βx) δ 2 x 2 }, (13)

where the following notations have been introduced: Futher some mathematical calculations lead to where: W (x)w (x) = ω2 a 4 f 2 { J 2 1 (βx) THE ACOUSTIC POWER RADIATED 113 β = k a, δ = λ β, α = J 1(λ) J (λ) (14) β 2 x 2 + ( 1 + q 2 2q cos l ) [αδj (βx) xj 1 (βx)] 2 2 (q cos l 1) J 1(βx) x (δ 2 x 2 ) 2 } αδj (βx) xj 1 (βx) δ 2 x 2, (15) q = η f, l = ϕ ϕ (16) Since the above notations being dimensionless, they are very convenient for describing the excitations 31 The active power The formulation for the active power is derived from formula (1) by performing integration along the real axis within the limits x (, 1) [6] P active = πρ ck 2 1 W (x)w (x)xdx (17) 1 x 2 Inserting Eq (15) into (17) and introducing the following notations: P = πa 2 ρ cω 2 f 2, E 1 = E 2 = E 3 = 1 1 1 [δαj (βx) xj 1 (βx)] 2 xdx (δ 2 x 2 ) 2 1 x 2, J 2 1 (βx)dx x 1 x 2, J 1 (βx) (αδj (βx) xj 1 (βx)) dx (x 2 δ 2 ) 1 x 2, A = 1 + q 2 2q cos l, B = 2(q cos l 1), (18)

114 K SZEMELA, W P RDZANEK Jr, W RDZANEK we transform the formula for active power to the form [4] P active = P (E 1 + AE 2 BE 3 ), (19) where the magnitude of P is regarded as a unit of the acoustic power The integrals given by formulae (18) can be calculated on the basis of the Levine s and Leppington s method and of the Cauchy s theorem of residues It is necessary for computation to assume that δ < 1 Computing the integral E 1 we introduce the function of complex variable z = x+iy, which satisfies the following conditions: ReF 1 (x) = F 1 (z) = J 1(βz)H (1) 1 (βz) z 1 z 2, (2) J 2 1 (βx) x 1 x 2, ReF 1(iy) =, (21) where by H n (1) we have denoted the first kind, n-th order Hankel function Choosing the suitable, closed path of integration C within and along which the considered function is analytical, regular and unique and using the Cauchy s theorem, we obtain [1] F 1 (z)dz = (22) C The obtained equation can be transformed to the symbolic form P 1 + 1 + R + i = 1 2 ResF 1(), where symbol P denotes that the integral within the limits (,1) is interpreted as the Cauchy principal value The integral computed along the great circle when its radius increases infinitely is equal to zero The equality (21) results in the fact that there is also no contribution from the integral calculated along the imaginary axes [6] Finally we get { E 1 = Re πi 1 } 2 Res F 1() + 1 ImJ 1 (βx)h (1) 1 (βx) x dx (23) x 2 1 The integral within the limits (1, ) can be evaluated using the stationary phase method and the asymptotes for Bessel functions Taking into consideration that ResF 1 () = i π, (24)

THE ACOUSTIC POWER RADIATED 115 we obtain E 1 = 1 2 ( 1 + cos γ ), (25) βπβ where the following notation has been introduced: γ = 2β + π/4 (26) The integrals E 2 and E 3 can be calculated in an analogous way by choosing the suitable functions and path of integration [1] For integral E 2 the following function is introduced: zf 2 (z) F 2 = (δ 2 z 2 ) 2 1 z, (27) 2 where F 2 (z) = α 2 δ 2 J (βz)h (1) (βz) + z2 J 1 (βz)h (1) 1 [ (βz) ] αδz J (βz)h (1) 1 (βz) + J 1(βz)H (1) (βz) (28) Basing on the Cauchy s theorem concerning the residues and on the following relations: ( ) ImF 2 (δ) df2 (δ) δ 2 =, Im = 2δ2 β ( 1 + α 2 ), (29) dz πλ we obtain the final result E 2 = 1 { 1 + α 2 2 + (1 α2 δ 2 } ) cos γ + 2δα sin γ 1 δ 2 βπβ(1 δ 2 (3) ) To evaluate the integral E 3, the function is introduced in the form where F 3 (z) = F 3 (z) = 1 2 αδ [ J 1 (βz)h (1) (βz) + J (βz)h (1) 1 (βz) ] F 3 (z) (z 2 δ 2 ) 1 z 2, (31) zj 1 (βz)h (1) 1 (βz) (32) In this case the path of integration is the same as that used in integral E 2 Some mathematical calculations lead to [ ] α E 3 = λ 1 δ + 1 λα 2 βπβ (1 δ 2 sin γ + cos γ (33) ) β The formula (19) together with the formulae (25), (3) and (33) represent the active sound power radiated by the investigated source

116 K SZEMELA, W P RDZANEK Jr, W RDZANEK 32 The reactive power The reactive power can be derived from the integral formulation [8] P reactive = πρ ck 2 1 W (x)w (x)xdx (34) x 2 1 Computing the above integral we use the stationary phase method and the following asymptotic formulae for Bessel functions: J 2 (βx) 1 πβx {1 + sin 2βx}, J 1 2 (βx) 1 {1 sin 2βx}, πβx J (βx)j 1 (βx) 1 (35) πβx cos 2βx After some mathematical transformations, the reactive power according to the Eqs (18), (26) can be expressed in the final form where P reactive = P ( {f 2 1 1 ) π πβ 2 β sin γ 1 π + 2(1 δ 2 ) β [ + A 1 α2 (1 2δ 2 ) 2(1 δ 2 ) + αδ ] + B Ω [( 4A(δ 2 α 2 ) 1) 1 δ 2 B sin γ ( 8A 1 δ 2 + B ) ]} cos γ, (36) Ω = arcsin δ δ 1 δ 2 (37) The active and reactive sound power is expressed by the elementary formulae which are convenient for further numerical calculations 4 Conclusions On the basis of the asymptotic formulae for the acoustic power and of the more general integral formulation (17), (34) we come to a conclusion that both the active and reactive sound power of the considered source for arbitrary values of parameters: q, β, λ reach maximum value when the difference of phases between excitation equals π (Fig 3, 4) That is when a transverse deflection of points on the surface of the membrane and the displacement at the edge have opposite directions

THE ACOUSTIC POWER RADIATED 117 For some nearby resonance frequencies we observe a distinct increase of the acoustic power (Fig 5) Neglecting of damping causes that the sound power increases infinitely when frequency of the excitations tends to the resonance value The acoustic sound power radiated by a source can be controlled by means of selection of appropriate amplitudes, phases and frequency characterizing both kinds of excitations The derived formulae, having elementary form, are very useful for some numerical calculations Fig 2 The active and reactive sound power plotted in terms of parameter η /f for β = 15, δ = 5 and for some values of the differences between the phases associated with the excitations Fig 3 The active and reactive sound power in terms of parameter ϕ ϕ in the case of η /f = 1, β = 15

118 K SZEMELA, W P RDZANEK Jr, W RDZANEK Fig 4 The active and reactive power plotted as a function of parameters η /f and ϕ ϕ for β = 15 and δ = 5 Fig 5 The active acoustic power in terms of ϕ ϕ for frequencies correspondingly near and far from the resonance when β = 15, η /f = 1 References [1] LEVINE H, LEPPINGTON F G, A note on the acoustic power output of a circular plate, Journal of Sound and Vibration,121, 269-275 (1988) [2] MALECKI I, Teoria fal i układów akustycznych, PWN, Warszawa 1964 [3] RDZANEK W J, RDZANEK JR W P, ENGEL Z, The total sound power radiated by a circular plate with a hole in its center, Mechanika, 22, 395 43 (23) [4] RDZANEK W J, RDZANEK W P, SZEMELA K, Effect of excitation of the edge of a circular membrane on the sound radiation [in Polish], Otwarte Seminarium z Akustyki OSA 5, Szczyrk 23 [5] RDZANEK W P, ENGEL Z, RDZANEK W J, Phase compensation of acoustic pressure of a plane annular plate [in Polish], Metody aktywne redukcji drgań i hałasu, Kraków-Krynica, 249 256, 21

THE ACOUSTIC POWER RADIATED 119 [6] RDZANEK JR W P, The energy aspect of the reciprocal interactions of pairs of two different vibration modes of a clamped annular plate, Journal of Sound and Vibration, 249, 2, 37 323 (22) [7] RDZANEK JR W P, The sound power of an individual mode of a clamped- free annular plate, Journal of Sound and Vibration, 261, 775 79 (23) [8] SKUDRZYK E, Simple and complex vibratory systems, University Press, University Park and London 1968 [9] WATSON G N, Theory of Bessel functions, University Press, Cambridge 1966