#A9 INTEGERS 12 (2012) PRIMITIVE PRIME DIVISORS IN ZERO ORBITS OF POLYNOMIALS

Similar documents
Rigid Divisibility Sequences Generated by Polynomial Iteration

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC

Galois theory of quadratic rational functions with a non-trivial automorphism 1

Appending Digits to Generate an Infinite Sequence of Composite Numbers

On the Diophantine Equation x 2 = 4q n 4q m + 9

EXTENDING A THEOREM OF PILLAI TO QUADRATIC SEQUENCES

Two Diophantine Approaches to the Irreducibility of Certain Trinomials

Fibonacci numbers of the form p a ± p b

DESCENT ON ELLIPTIC CURVES AND HILBERT S TENTH PROBLEM

arxiv: v1 [math.nt] 9 Sep 2017

arxiv: v2 [math.nt] 29 Jul 2017

RANK AND PERIOD OF PRIMES IN THE FIBONACCI SEQUENCE. A TRICHOTOMY

1. Introduction. Let P and Q be non-zero relatively prime integers, α and β (α > β) be the zeros of x 2 P x + Q, and, for n 0, let

ON THE NUMBER OF PLACES OF CONVERGENCE FOR NEWTON S METHOD OVER NUMBER FIELDS

ABC implies primitive prime divisors in arithmetic dynamics

A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS

ABSTRACT. In this note, we find all the solutions of the Diophantine equation x k = y n, 1, y 1, k N, n INTRODUCTION

ON DIVISIBILITY OF SOME POWER SUMS. Tamás Lengyel Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA.

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

Perfect Power Riesel Numbers

arxiv: v1 [math.nt] 4 Jun 2018

ON POONEN S CONJECTURE CONCERNING RATIONAL PREPERIODIC POINTS OF QUADRATIC MAPS

A parametric family of quartic Thue equations

Mathematics for Cryptography

Arithmetic properties of the Ramanujan function

On the Exponential Diophantine Equation a 2x + a x b y + b 2y = c z

MATH 215 Final. M4. For all a, b in Z, a b = b a.

A family of quartic Thue inequalities

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

p-adic Properites of Elliptic Divisibility Sequences Joseph H. Silverman

Divisibility properties of Fibonacci numbers

Powers of Two as Sums of Two Lucas Numbers

PRIME FACTORS OF DYNAMICAL SEQUENCES. Xander Faber and Andrew Granville

Diophantine triples in a Lucas-Lehmer sequence

Primitive Divisors in Generalized Iterations of Chebyshev Polynomials

On Anti-Elite Prime Numbers

Using dynamical systems to prove that there are infinitely many primes

Pacific Journal of Mathematics

On integer solutions to x 2 dy 2 = 1, z 2 2dy 2 = 1

Fadwa S. Abu Muriefah. ON THE DIOPHANTINE EQUATION x fc = y n

METRIC HEIGHTS ON AN ABELIAN GROUP

Fermat numbers and integers of the form a k + a l + p α

On the Number of Rational Iterated Pre-Images of -1 under Quadratic Dynamical Systems

Odd prime values of the Ramanujan tau function

Andrew Granville To Andrzej Schinzel on his 75th birthday, with thanks for the many inspiring papers

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

R.A. Mollin Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

MATH 501 Discrete Mathematics. Lecture 6: Number theory. German University Cairo, Department of Media Engineering and Technology.

NUMBER FIELDS WITHOUT SMALL GENERATORS

PRIMITIVE PRIME FACTORS IN SECOND-ORDER LINEAR RECURRENCE SEQUENCES

Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 70118

arxiv: v1 [math.nt] 7 Sep 2015

FIBONACCI DIOPHANTINE TRIPLES. Florian Luca and László Szalay Universidad Nacional Autonoma de México, Mexico and University of West Hungary, Hungary

The Arithmetic of Dynamical Systems

Algebra for error control codes

Class numbers of quadratic fields Q( D) and Q( td)

Generalized Lebesgue-Ramanujan-Nagell Equations

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a "

arxiv: v2 [math.nt] 23 Sep 2011

arxiv: v1 [math.co] 24 Jan 2017

THE p-adic VALUATION OF LUCAS SEQUENCES

Arithmetic properties of periodic points of quadratic maps, II

arxiv: v3 [math.nt] 15 Dec 2016

Diophantine equations for second order recursive sequences of polynomials

Approximation exponents for algebraic functions in positive characteristic

GENERATORS OF FINITE FIELDS WITH POWERS OF TRACE ZERO AND CYCLOTOMIC FUNCTION FIELDS. 1. Introduction

On reducible and primitive subsets of F p, II

M381 Number Theory 2004 Page 1

ARITHMETIC PROPERTIES FOR HYPER M ARY PARTITION FUNCTIONS

A Guide to Arithmetic

arxiv: v1 [math.nt] 9 Jan 2019

ABC Conjecture Implies Infinitely Many non-x-fibonacci-wieferich Primes A Linear Case of Dynamical Systems

CONGRUENCES MODULO SQUARES OF PRIMES FOR FU S k DOTS BRACELET PARTITIONS

198 VOLUME 46/47, NUMBER 3

NOTES ON FINITE FIELDS

ON VALUES OF CYCLOTOMIC POLYNOMIALS. V

SEARCH FOR WIEFERICH PRIMES THROUGH THE USE OF PERIODIC BINARY STRINGS. Jan Dobeš, Miroslav Kureš

1. INTRODUCTION For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B (t), are defined by means of the generating function

2. THE EUCLIDEAN ALGORITHM More ring essentials

4 Powers of an Element; Cyclic Groups

Arboreal Galois Representations

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009 UNIFORM BOUNDS ON PRE-IMAGES UNDER QUADRATIC DYNAMICAL SYSTEMS

ON THE SET OF WIEFERICH PRIMES AND OF ITS COMPLEMENT

PELL NUMBERS WHOSE EULER FUNCTION IS A PELL NUMBER. Bernadette Faye and Florian Luca

P -adic root separation for quadratic and cubic polynomials

MATH FINAL EXAM REVIEW HINTS

* 8 Groups, with Appendix containing Rings and Fields.

THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5

POLYNOMIAL SOLUTIONS OF PELL S EQUATION AND FUNDAMENTAL UNITS IN REAL QUADRATIC FIELDS

Fibonacci Diophantine Triples

Abstracts of papers. Amod Agashe

1. PROOFS THAT THERE ARE INFINITELY MANY PRIMES

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

EVERY NATURAL NUMBER IS THE SUM OF FORTY-NINE PALINDROMES

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

THE NUMBER OF TWISTS WITH LARGE TORSION OF AN ELLITPIC CURVE

arxiv: v2 [math.nt] 4 Jun 2016

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222

arxiv: v2 [math.nt] 10 Mar 2017

Transcription:

#A9 INTEGERS 12 (2012) PRIMITIVE PRIME DIVISORS IN ZERO ORBITS OF POLYNOMIALS Kevin Doerksen Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada kdoerkse@gmail.com Anna Haensch Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut ahaensch@wesleyan.edu Received: 9/20/10, Revised: 6/2/11, Accepted: 1/1/12, Published: 1/13/12 Abstract Let (b n ) = (b 1, b 2,... ) be a sequence of integers. A primitive prime divisor of a term b k is a prime which divides b k but does not divide any of the previous terms of the sequence. A zero orbit of a polynomial ϕ(z) is a sequence of integers (c n ) where the n-th term is the n-th iterate of ϕ at 0. We consider primitive prime divisors of zero orbits of polynomials. In this note, we show that for c, d in Z, where d 2 and c ±1, every iterate in the zero orbit of ϕ(z) = z d + c contains a primitive prime divisor whenever zero has an infinite orbit. If c = ±1, then every iterate after the first contains a primitive prime divisor. 1. Introduction A dynamical system is a pair (ϕ, S) where S is a set and ϕ is a map from S to itself. Given such a pair, the orbit of an element α S under ϕ is the set where {ϕ(α), ϕ 2 (α),..., ϕ n (α),... } ϕ n (z) = ϕ ϕ ϕ(z). }{{} n times Such an element α can classified according to the size of the orbit. If the orbit contains only finitely many values, then α is a preperiodic point. If the orbit contains infinitely many values, then α is a wandering point. If we restrict to the case where S = Z and ϕ Z[z], the orbit of a wandering point α, will yield an infinite sequence

INTEGERS: 12 (2012) 2 of integers. Some very natural questions about prime factorization and divisibility in these sequences arise. In particular, one can ask which iterates in the orbit contain prime divisors not dividing any previous term. Definition 1. Let (b n ) = (b 1, b 2,... ) be a sequence of integers. We say that the term b n contains a primitive prime divisor if there exists a prime p such that p b n, but p b i for i < n. Questions about terms containing primitive prime divisors have been asked for a number of different recurrence sequences. Classical results by Bang [1] (for b = 1) and Zsigmondy [11] showed that for any a, b N, every term in the sequence a n b n has a primitive prime divisor past the sixth term. The question of primitive prime divisors in second-order linear recurrence sequences was completely solved by Bilu, Hanrot, and Voutier in [2]. Recent papers have addressed the question of primitive prime divisors in nonlinear recurrence sequences. Elliptic divisibility sequences, for example, were considered by Silverman in [8], and later by Everest, Mclaren, and Ward in [3] and Yabuta in [10]. In our paper, we consider recurrence sequences generated by the orbit of wandering points of non-linear polynomials. This question was first addressed by Rice [7]. Theorem 2. (Rice 2007) Let ϕ(z) Z[z] be a monic polynomial of degree d 2. Suppose that (b n ) = ϕ n (0) has infinite orbit under iteration of ϕ such that (b n ) is a rigid divisibility sequence. Then all but finitely many terms of the sequence (α, ϕ(α), ϕ 2 (α),... ) contain a primitive prime divisor. See Section 2 for a definition of rigid divisibility sequences. Rice also showed that if zero is a preperiodic point of a monic polynomial of degree 2, then the orbit of any wandering point has finitely many terms which contain no primitive prime divisor. Silverman and Ingram [5] later generalized this result to arbitrary rational maps over number fields. Faber and Granville [4] also considered rational maps, φ, over number fields, but they looked at primitive prime divisors in the sequence generated by ( φ n+ (α) φ n (α) ) for a wandering point α and a fixed integer 1. Silverman and Ingram use Roth s theorem to prove their result, and therefore their proof does not give a means to find an effective upper bound on the terms without primitive prime divisors. Rice also remarks that though his bounds are effectively computable, he does not compute them. Silverman [9] proposed that it would be of interest to compute explicit upper bounds on n for the terms which contain no primitive prime divisor, when the polynomial ϕ(z) and α are fixed. In this paper, we answer this question for a certain class of polynomials. We prove Theorem 3. Let ϕ Z[z] be the polynomial ϕ(z) = z d + c, where c, d Z and d 2. Suppose that zero is a wandering point of ϕ and write b n = ϕ n (0). Then 1. If c = ±1, then b n contains a primitive prime for all n 2.

INTEGERS: 12 (2012) 3 2. For all other c Z, b n contains a primitive prime for all n 1. We prove Theorem 3 in two parts. We begin by showing that for the sequence (b n ), defined in the statement of the theorem, there is an upper bound on the size of the product of all prime divisors of a term b n which are not primitive prime divisors. We then show that the sequence grows too fast for any one term to not contain a primitive prime divisor (other than possibly the first term). Acknowledgements. The authors would like to thank Joe Silverman for originally drawing their attention to the problem. They would also like to thank Michelle Manes and Rafe Jones for the helpful comments and suggestions. Thanks also goes to the organizers of the NSF-funded Arizona Winter School, at which the initial research for this paper took place. 2. Rigid Divisibility Sequences In order to prove Theorem 3, we make use of a special type of divisibility sequence, with terminology taken from Jones [6] and Rice [7]. For α Z, let v p (α) denote the valuation at p of α. A sequence (b n ) of integers is said to be a rigid divisiblity sequence if for every prime p the following two properties hold: 1. If v p (b n ) > 0 then v p (b nk ) = v p (b n ) for all k 1, and 2. If v p (b n ) > 0 and v p (b m ) > 0 then v p (b n ) = v p (b m ) = v p (b gcd(m,n) ). Lemma 4. (Rice [7]) Let ϕ Z[z] be the polynomial ϕ(z) = z d + c, where c, d Z and d 2. Let zero be a wandering point of ϕ and write b n = ϕ n (0). Then (b n ) is a rigid divisibility sequence. Proof. Let p be a prime and suppose v p (b n ) = e > 0 for some n, e N. b n = p e m for some m where p m. Then Then b n+1 = p ed m d + c = p e+1 ( p e(d 1) 1 m d) + c c (mod p e+1 ), with the last congruence possible because d 2. But b 1 = c so b n+1 b 1 (mod p e+1 ). By induction on t, we have b n+t b t (mod p e+1 ), and so in general for k 1, b kn+r b r (mod p e+1 ), and in particular, for r = 0, we get v p (b kn ) = v p (b n ). Now suppose m, n N such that v p (b m ) > 0 and v p (b n ) > 0. Without loss of generality, suppose m < n and m n (the case where m n has already been covered). Let s, t N such that t 1 and sm + tn = gcd(m, n). Then b gcd(m,n) = b sm+tn b tn b n (mod p e+1 ), therefore v p ( bgcd(m,n) ) = vp (b n ), and since m is a positive multiple of gcd(m, n), we also conclude v p ( bgcd(m,n) ) = vp (b m ).

INTEGERS: 12 (2012) 4 Remark 5. Rice actually proves a more general result than Lemma 4. In Propositions 3.1 and 3.2 from [7], he shows that for any polynomial ϕ of degree d 2 that has a wandering orbit at zero, then the sequence b n as defined in Lemma 4 is a rigid divisibility sequence if and only if the coefficient of the linear term of ϕ is zero. Suppose (b n ) is a rigid divisibility sequence. For every n, we can write b n = p e1 1 pe2 2... pe k k q f1 1... qf l l where p i are the primitive prime divisors of b n and q j are the prime divisors of b n which are not primitive. Let P n = p e1 1... pe k k = the primitive part of b n and N n = q f1 1... qf l l = the non-primitive part of b n. Lemma 6. Let (b n ) be a rigid divisibility sequence and let P n and N n be as above. Then N n = P d. d n,d n Proof. Let p be a prime divisor in the non-primitive part of b n. Then there exists some positive integer d < n such that p is a primitive prime divisor of b d. By Property 2 of rigid divisibility sequences, v p (b n ) = v p (b d ) = v p (b gcd(d,n) ). Since p is a primitive prime divisor of b d, we must have gcd(d, n) d and so d n. Therefore N n divides d n,d n P d. Now suppose d n and suppose q is a primitive prime divisor of b d. Then by Property 1, v q (b d ) = v q (b n ). Therefore the product d n,d n P d divides N n, completing the proof. Armed with these two results, we are now able to proceed with the main theorem of this paper. 3. Proof of Main Result We begin this section with two useful lemmas. Lemma 7. Let ϕ Z[z] be the polynomial ϕ(z) = z d + c, where c, d Z and d 2. Let a Z, and for nonnegative n Z, define the sequence (b a,n ) by b a,0 = a and b a,n+1 = ϕ(b a,n ) and let B a,n = b a,n. If a c and a > 2 then (B a,n ) is an increasing sequence.

INTEGERS: 12 (2012) 5 Proof. We prove this by induction. For the base case, B a,1 = ϕ(a) = a d + c > 2a c a. Now suppose (B a,n ) is increasing on n N. Then B a,n+1 = ϕ(b a,n ) = (b a,n ) d + c > 2b a,n c > B a,n + a c B a,n, completing the proof. The statement of Theorem 3 requires zero to be a wandering point of ϕ. In the next lemma, we characterize all polynomials over Z of the form z d + c for which zero is a preperiodic point. Rice proves a more general result by giving a complete classification of monic polynomials for which the orbit of zero is finite (see [7, Proposition 2.1]). Nevertheless, the special case where ϕ(z) = z d +c is a relevant lemma with a straightforward proof. We therefore provide a full proof. Lemma 8. Let ϕ Z[z] be the polynomial ϕ(z) = z d + c, where c, d Z and d 2. Then either 1. Zero is a wandering point and the sequence (B n ), defined by B n = ϕ n (0), is an increasing sequence, or 2. Zero is a preperiodic point and exactly one of the following is true (a) c = 0, (b) c = 1 and d is even, or (c) c = 2 and d = 2. Proof. Note that ϕ(0) = c, so if c / {0, ±1, ±2}, then (B n ) is an increasing sequence by Lemma 7, and so zero must be a wandering point. For c > 0, a simple induction shows that (ϕ n (0)) is an increasing sequence, and so zero is a wandering point. If c = 0 then ϕ(0) = 0 and zero is a preperiodic point. Now suppose c = 1. If d is even, then ϕ(0) = 1 and ϕ( 1) = 0 and therefore zero is a preperiodic point. If d is odd then ϕ(0) = 1, ϕ( 1) = 2, and ϕ( 2) = ( 2) d 1. Since ϕ( 2) > 2, we can apply Lemma 7 to show that all subsequent iterates grow in absolute value. Finally, suppose c = 2. If d = 2 then ϕ(0) = 2, ϕ( 2) = 2, and ϕ(2) = 2. If d > 2 then ϕ(0) = 2 and ϕ( 2) = ( 2) d 2. But ( 2) d 2 2 d 2 2 3 2 = 6. We can therefore apply Lemma 7 to conclude that zero is a wandering point.

INTEGERS: 12 (2012) 6 We now are ready to prove Theorem 3. Proof of Theorem 3. Note first that if c = 0, then zero would not be a wandering point, so we must have c 0. Also, b 1 = ϕ(0) = c, so b 1 will have a primitive prime divisor if and only if c ±1. For b 2, note that b 2 = ϕ(b 1 ) = c d + c = c(c d 1 + 1), and since b 1 = c, we see that b 2 will contain a primitive prime divisor, except when c = 0 or when c = 1 and d is even. In both cases, by Lemma 8, zero would not be a wandering point. Now let m N with m 3. We will prove that b m contains a primitive prime. Let denote the Euclidean absolute value. Then b m = (b ) d + c (b ) d c b 2 b 1 because b 1 = ϕ(0) = c and d 2 > b 2 b. because (b n ) is increasing and m 3. We can factor the last line to obtain b m > b ( b 1). (1) To complete the proof, we first need to show that for all m 3, b k < b m. We prove this claim by induction. The base case is trivially true. Now assume that m 2 b k < b. In particular, this implies Combining (2) with (1), m 2 m 2 b k = b b k b 1. (2) b k b ( b 1) < b m. Finally, by Lemma 4, we know that (b n ) is a rigid divisibility sequence. For all m N, let P m and N m denote the primitive part and the non-primitive part of b m respectively. Then b m = P m N m and by Lemma 6 N m = d m,d m P d P k Therefore P m > 1 and b m contains a primitive prime. b k < b m

INTEGERS: 12 (2012) 7 References [1] A. S. Bang. Taltheoretiske Undersogelser. Tidsskrift Mat., 4(5):7080, 130137, 1886. [2] Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75 122, With an appendix by M. Mignotte. [3] Graham Everest, Gerard Mclaren, and Thomas Ward, Primitive divisors of elliptic divisibility sequences, J. Number Theory 118 (2006), no. 1, 71 89. [4] Xander Faber and Andrew Granville, Prime factors of dynamical sequences, Journal für die reine und angewandte Mathematik (Crelles Journal) (2011). [5] Patrick Ingram and Joseph H. Silverman, Primitive divisors in arithmetic dynamics, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 289 302. [6] Rafe Jones, The density of prime divisors in the arithmetic dynamics of quadratic polynomials, J. Lond. Math. Soc. (2) 78 (2008), no. 2, 523 544. [7] Brian Rice, Primitive prime divisors in polynomial arithmetic dynamics, Integers 7 (2007), A26, 16 pp. (electronic). [8] Joseph H. Silverman, Wieferich s criterion and the abc-conjecture, J. Number Theory 30 (1988), no. 2, 226 237. [9] Joseph H. Silverman. Lecture Notes on Arithmetic Dynamics, Arizona Winter School, 2010. math.arizona.edu/ swc/aws/10/2010silvermannotes.pdf. [10] Minoru Yabuta, Primitive divisors of certain elliptic divisibility sequences, Experiment. Math. 18 (2009), no. 3, 303 310. [11] K. Zsigmondy. Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3(1) (1892), 265 284.