A Guide to Experiments in Quantum Optics

Similar documents
Optics, Light and Lasers

Elements of Quantum Optics

Corrections to A Guide to Experiments in Quantum Optics

Lectures on Quantum Optics and Quantum Information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

MESOSCOPIC QUANTUM OPTICS

Squeezed Light Techniques for Gravitational Wave Detection

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Multimode Entanglement in. Continuous Variables

The Quantum Limit and Beyond in Gravitational Wave Detectors

Theory and Experiment

Content of the lectures

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Lasers and Electro-optics

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA.

Day 3: Ultracold atoms from a qubit perspective

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

Frequency dependent squeezing for quantum noise reduction in second generation Gravitational Wave detectors. Eleonora Capocasa

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion

QUANTUM- CLASSICAL ANALOGIES

Optics, Optoelectronics and Photonics

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Quantum Mechanical Noises in Gravitational Wave Detectors

Nonlinear Optics. Second Editio n. Robert W. Boyd

Quantum-noise reduction techniques in a gravitational-wave detector

Hong-Ou-Mandel effect with matter waves

Feedback control of laser intensity noise

Niels Bohr Institute Copenhagen University. Eugene Polzik

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING

Erwin Schrödinger and his cat

Quantum Imaging Technologies: Quantum Laser Radar

An Overview of Advanced LIGO Interferometry

Dynamical Casimir effect in superconducting circuits

AP/P387 Note2 Single- and entangled-photon sources

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

High-fidelity continuous-variable quantum teleportation toward multistep quantum operations

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

0.5 atoms improve the clock signal of 10,000 atoms

PRINCIPLES OF PHYSICAL OPTICS

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

Single photons. how to create them, how to see them. Alessandro Cerè

Quantum mechanics and reality

Optical Techniques for Gravitational-Wave Detection

Gravitational-Wave Detectors

Quantum Imaging Technologies: Quantum Laser Radar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Quantum description of light. Quantum description of light. Content of the Lecture

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

I. INTRODUCTION A classical electromagnetic eld consists of waves with well dened amplitude and phase. However, in a quantum treatment, uctuations are

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Optical Systems Program of Studies Version 1.0 April 2012

arxiv: v1 [physics.optics] 12 Feb 2013

Contents. Part I Fundamentals of Lasers 1 Introduction... 3

arxiv:quant-ph/ v1 19 Aug 2005

Contents Classical and Quantum Interference and Coherence Quantum Interference in Atomic Systems: Mathematical Formalism

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

FUNDAMENTALS OF POLARIZED LIGHT

PART 2 : BALANCED HOMODYNE DETECTION

The quantum laser pointer and other applications of squeezed light.

Nonlinear Optics and Squeezed Light with 4WM

UNIVERSITY OF SOUTHAMPTON

Solitons. Nonlinear pulses and beams

Continuous-variable quantum information processing

Distributed feedback semiconductor lasers

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3

Quântica Oscilador Paramétrico

Semiconductor Lasers II

Introduction to Modern Quantum Optics

Diode Lasers and Photonic Integrated Circuits

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

SUPPLEMENTARY INFORMATION

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

Squeezed Light for Gravitational Wave Interferometers

Study of a quantum nondemolition interferometer using ponderomotive squeezing

Quantum Ghost Imaging by Measuring Reflected Photons

Light Sources and Interferometer Topologies - Introduction -

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Quantum Teleportation with Photons. Bouwmeester, D; Pan, J-W; Mattle, K; et al. "Experimental quantum teleportation". Nature 390, 575 (1997).

Quantum non-demolition measurements:

Parametric down-conversion

Quantum Memory with Atomic Ensembles

Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled Light

QND for advanced GW detectors

Quantum Control of States of Light (2) Optimization of information extraction from optical measurements

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum

Supplementary Figures

Quantum Dense Coding and Quantum Teleportation

Quantum computation and quantum information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Criteria of quantum correlation in the measurement of continuous variables in optics

1 Introduction Why energy-time and time-bin entanglement? Aim of this work... 4

The Gouy phase shift in nonlinear interactions of waves

INTRODUCTION TO NONLINEAR OPTICAL EFFECTS IN MOLECULES AND POLYMERS

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Quantum optics and squeezed states of light

Transcription:

Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA

Contents Preface 1 Introduction 1.1 Historical perspective... 1.2 Motivation: Practical effects of quantum noise... 1.3 How to use this guide... 2 Classical models of light 2.1 Classical waves... 2.1.1 Mathematical description of waves.... 2.1.2 The Gaussian beam... 2.1.3 Quadrature amplitudes... 2.1.4 Field energy, intensity. power... 2.1.5 A classical mode of light... 2.1.6 Classical modulations... 2.2 Statistical properties of classical light... 2.2.1 The origin of fluctuations... 2.2.2 Coherence... 2.2.3 Correlation functions... 2.2.4 Noise spectra... 2.2.5 An idealized classical case: Light from a chaotic source.... 3 Photons -the motivation to go beyond classical optics 3.1 Detecting light... 3.2 The concept of photons... 3.3 Light from a thermal source... 3.4 Interference experiments... 3.5 Modelling single photon experiments... 3.5.1 3.5.2 Polarization of a single photon... Some mathematics... 3.5.3 Polarization states... 3.5.4 The single photon interferometer... 3.6 Intensity correlation, bunching, anti-bunching... XI 1 1 3 8 10 12 13 13 14 16 18 19 20 23 23 23 27 29 31 36 37 37 40 41 43 46 47 49 50 51 53

VI Contents 3.7 Single photon Rabi frequencies.... 4 Quantum models of light 4.1 Quantization of light... 4.1.1 Some general comments on quantum mechanics... 4.1.2 Quantization of cavity modes... 4.1.3 Quantized energy... 4.1.4 The quantum mechanical harmonic oscillator... 4.2 Quantum states of light... 4.2.1 Number or Fock states... 4.2.2 Coherent states... 4.2.3 Mixed states... 4.3 Quantum optical representations... 4.3.1 Quadrature amplitude operators... 4.3.2 Probability and quasi-probability distributions... 4.3.3 Photon number distributions, Fano factor... 4.4 Propagation and detection of quantum optical fields... 4.4.1 Propagation in quantum optics... 4.4.2 Detection in quantum optics... 4.4.3 An example: The beamsplitter... 4.5 Quantum transfer functions... 4.5.1 A linearized quantum noise description... 4.5.2 An example: The propagating coherent state... 4.5.3 Real laser beams... 4.5.4 The transfer of operators, signals and noise... 4.5.5 Sideband modes as quantum states... 4.6 Quantum correlations... 4.6.1 Photon correlations... 4.6.2 Quadrature correlations... 4.7 Summary: The different quantum models... 56 57 60 60 60 61 62 63 64 64 65 68 68 68 70 75. 77 77 81 82 84 84 86 87 88 90 92 92 93 95 97 5 Basic optical components 5.1 Beamsplitters... 5.1.1 Classical description of a beamsplitter... 5.1.2 The beamsplitter in the quantum operator model... 5.1.3 The beamsplitter with single photons... 5.1.4 The beamsplitter and the photon statistics... 5.1.5 The beamsplitter with coherent states... 5.1.6 The beamsplitter in the noise sideband model... 5.1.7 Comparison between a beamsplitter and a classical current junction. 5.2 Interferometers... 5.2.1 Classical description of an interferometer... 5.2.2 Quantum model of the interferometer... 99 99 99 102 104 106 108 110 111 112 113 115

Contents VI1 5.2.3 The single photon interferometer... 115 5.2.4 Transfer of intensity noise through the interferometer... 116 5.2.5 Sensitivity limit of an interferometer... 117 5.3 Cavities... 119 5.3.1 Classical description of a linear cavity... 121 5.3.2 The special case of high reflectivities... 125 5.3.3 The phase response... 126 5.3.4 Spatial properties of cavities... 128 5.3.5 Equations of motion for the cavity mode... 132 5.3.6 The quantum equations of motion for a cavity... 133 5.3.7 The propagation of fluctuations through the cavity... 133 5.3.8 Single photons through a cavity... 137 5.4 Other optical components... 138 5.4.1 Lenses... 138 5.4.2 Crystals and polarizers... 140 5.4.3 Modulators... 141 5.4.4 Optical fibres... 143 5.4.5 Optical noise sources... 143 5.4.6 Nonlinear processes... 144 145 6 Lasers and Amplifiers 147 6.1 The laser concept... 147 6.1.1 Technical specifications of a laser... 148 6.1.2 Rate equations... 150 6.1.3 Quantum model of a laser... 154 6.1.4 Examples of lasers... 156 6.1.5 Laser phase noise... 161 6.2 Amplification of optical signals... 162 6.3 Parametric amplifiers and oscillators... 164 6.3.1 The second-order non-linearity... 165 6.3.2 Parametric amplification... 167 6.3.3 Optical parametric oscillator... 168 6.3.4 Pair production... 169 6.4 Summary... 171 171 7 Photodetection techniques 173 7.1 Photodetector characteristics... 173 7.2 Detecting single photons... 174 7.3 Photon sources and analysis... 178 7.4 Detecting photocurrents... 180 7.4.1 The detector circuit... 184 7.5 Spectral analysis of photocurrents... 187 197

VI11 Contents 8 Quantum noise: Basic measurements and techniques 200 8.1 Detection and calibration of quantum noise... 200 8.1.1 Direct detection and calibration... 200 8.1.2 Balanced detection... 204 8.1.3 Detection of intensity modulation and SNR... 205 8.1.4 Homodyne detection... 206 8.1.5 Heterodyne detection... 210 8.2 Intensity noise... 211 8.3 The intensity noise eater... 212 8.3.1 Classical intensity control... 213 8.3.2 Quantum noise control... 216 8.4 Frequency stabilization, locking of cavities... 221 8.4.1 How to mount a mirror... 225 8.5 Injection locking... 226 229 9 Squeezing experiments 232 9.1 The concept of squeezing... 232 9.1.1 Tools for squeezing, two simple examples... 232 9.1.2 Properties of squeezed states... 238 9.2 Quantum model of squeezed states... 242 9.2.1 The formal definition of a squeezed state... 242 9.2.2 The generation of squeezed states... 245 9.2.3 Squeezing as correlations between noise sidebands... 247 9.3 Detecting squeezed light... 250 9.3.1 Reconstructing the squeezing ellipse... 253 9.3.2 Summary of different representations of squeezed states... 254 9.3.3 Propagation of squeezed light... 254 9.4 Four wave mixing... 260 9.5 Optical parametric processes... 263 9.6 Second harmonic generation... 267 9.7 Kerr effect... 275 9.7.1 The response of the Kerr medium... 275 9.7.2 Fibre Kerr Squeezing... 277 9.7.3 Atomic Kerr squeezing... 279 9.8 Atom-cavity coupling... 280 9.9 Pulsed squeezing... 283 9.9.1 Quantum noise of optical pulses... 283 9.9.2 Pulsed squeezing experiments with Kerr media... 285 9.9.3 Pulsed SHG and OPO experiments... 287 9.9.4 Soliton squeezing... 288 9.9.5 Spectral filtering... 289 9.9.6 Nonlinear interferometers... 290 9.10 Amplitude squeezed light from diode lasers... 292 9.11 Twin photon beams... 294

Contents IX 9.12 Polarization squeezing... 295 9.13 Quantum state tomography... 298 9.14 Summary of squeezing results... 300 9.14.1 Loopholes in the quantum description... 303 303 10 Applications of squeezed light 310 10.1 Optical communication... 3 IO 10.2 Spatial squeezing and quantum imaging... 313 10.3 Optical sensors... 315 10.4 Gravitational wave detection... 321 10.4.1 The origin and properties of GW... 321 10.4.2 Quantum properties of the ideal interferometer... 323 10.4.3 The sensitivity of real instruments... 328 10.4.4 Interferometry with squeezed light... 333 338 11 QND 343 11.1 The concept of QND measurements... 343 11.2 Classification of QND measurements... 346 1 1.3 Experimental results... 348 11.4 Single photon QND... 350 353 12 Fundamental tests of quantum mechanics 355 12.1 Wave-Particle duality... 355 12.2 Indistinguishability... 358 12.3 Nonlocality... 362 12.3.1 Einstein-Podolsky-Rosen Paradox... 362 12.3.2 Generation of entangled CW beams... 365 12.3.3 Bell inequalities... 367 12.4 Summary... 371 37 I 13 Quantum Information 374 13.1 Photons as qubits... 374 13.2 Postselection and coincidence counting... 376 13.3 True single photon sources... 377 13.3.1 Heralded single photons... 377 13.3.2 Single photons on demand... 379 13.4 Characterizing photonic qubits... 381 13.5 Quantum key distribution... 382 13.5.1 QKD using single photons... 383 13.5.2 QKD using continuous variables... 385 13.5.3 No cloning... 387

X Contents 13.6 Teleportation... 387 13.6.1 Teleportation of photon qubits... 388 13.6.2 Continuous variable teleportation... 390 13.7 Quantum computation... 395 13.8 Summary... 400 401 14 Summary and outlook 404 15 Appendices 407 Appendix A: Gaussian functions... 407 Appendix B: List of quantum operators. states and functions... 408 Appendix C: The full quantum derivation of quantum states.... 410 Appendix D: Calculation of of the quantum properties of a feedback loop... 412 Appendix E: Symbols and abbreviations... 414 Index 416