(Elliptic) multiple zeta values in open superstring amplitudes

Similar documents
Elliptic multiple zeta values

Single-Valued Multiple Zeta Values and String Amplitudes

arxiv: v2 [hep-th] 23 Apr 2016

Elliptic Multiple Zeta Values

Differential Equations and Associators for Periods

Multiloop integrals in dimensional regularization made simple

Functions associated to scattering amplitudes. Stefan Weinzierl

Linear reducibility of Feynman integrals

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

arxiv: v3 [hep-th] 28 Jun 2013

A class of non-holomorphic modular forms

Loop Amplitudes from Ambitwistor Strings

Symbolic integration of multiple polylogarithms

Two-loop Remainder Functions in N = 4 SYM

New genus-two modular invariants & string theory

Feynman Integrals, Regulators and Elliptic Polylogarithms

13 Maximum Modulus Principle

CHY formalism and null string theory beyond tree level

From maximal to minimal supersymmetry in string loop amplitudes

Superstring Amplitudes as a Mellin Transform of Supergravity. Tomasz Taylor Northeastern University, Boston

Review: Modular Graph Functions and the string effective action

Feynman integrals as Periods

Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs

Multiple polylogarithms and Feynman integrals

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

Duality between Wilson Loops and Scattering Amplitudes in QCD

Progress on Color-Dual Loop Amplitudes

Amplitudes Conference. Edinburgh Loop-level BCJ and KLT relations. Oliver Schlotterer (AEI Potsdam)

The Ultimate Revenge Of The Analytic S-matrix

Loop Integrands from Ambitwistor Strings

Multiple polylogarithms and Feynman integrals

Higher genus modular graph functions

Euclidean path integral formalism: from quantum mechanics to quantum field theory

Amplitudes & Wilson Loops at weak & strong coupling

The Quantum Theory of Finite-Temperature Fields: An Introduction. Florian Divotgey. Johann Wolfgang Goethe Universität Frankfurt am Main

Generalizations of polylogarithms for Feynman integrals

Numerical Evaluation of Multi-loop Integrals

Progress on Color-Dual Loop Amplitudes

Supergravity from 2 and 3-Algebra Gauge Theory

arxiv: v1 [math-ph] 18 Oct 2016

Exact results for Wilson loops in N = 4 SYM

Twistor strings for N =8. supergravity

Elliptic multiple zeta values, modular graph functions and genus 1 superstring scattering amplitudes

Master integrals without subdivergences

Ambitwistor strings, the scattering equations, tree formulae and beyond

Exploring the function space of Feynman integrals. Stefan Weinzierl

Elliptic functions and Elliptic Integrals

Polylogarithms, Multiple Zeta Values and Superstring Amplitudes

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

MHV Vertices and On-Shell Recursion Relations

Why Supersymmetry is Different

Symmetries of the amplituhedron

EllipticTheta2. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Feynman Integrals, Polylogarithms and Symbols

Introduction to Orientifolds.

Introduction to Mixed Modular Motives

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

HyperInt - exact integration with hyperlogarithms

Multiple logarithms, algebraic cycles and trees

Mixed Motives Associated to Classical Modular Forms

Discontinuities of Feynman Integrals

Elliptic dilogarithms and two-loop Feynman integrals

Half BPS solutions in type IIB and M-theory

Finite-temperature Field Theory

Spectrum of Holographic Wilson Loops

Lecture 8: 1-loop closed string vacuum amplitude

The Non-commutative S matrix

A New Regulariation of N = 4 Super Yang-Mills Theory

arxiv: v1 [hep-th] 28 Dec 2018

Finite Temperature Field Theory

Convergence of Some Divergent Series!

Lorentz invariant scattering cross section and phase space

arxiv: v4 [hep-th] 17 Mar 2009

Fay s Trisecant Identity

Topic 4 Notes Jeremy Orloff

Periods, Galois theory and particle physics

Multiple Eisenstein series

Hexagon Functions and Six-Gluon Scattering in Planar N=4 Super-Yang-Mills

arxiv: v1 [hep-th] 28 Dec 2018

Dipole subtraction with random polarisations

Analytic 2-loop Form factor in N=4 SYM

8.821 F2008 Lecture 18: Wilson Loops

Multiloop scattering amplitudes in the LHC Era

THE. Secret Life OF SCATTERING AMPLITUDES. based on work with Lionel Mason and with Mat Bullimore. David Skinner - Perimeter Institute

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Twistors, amplitudes and gravity

Scattering Amplitudes! in Three Dimensions

A new perspective on long range SU(N) spin models

Poles at Infinity in Gravity

Differential Equations for Feynman Integrals

Virasoro and Kac-Moody Algebra

Periods and Superstring Amplitudes

A new look at the nonlinear sigma model 1

arxiv:math/ v1 [math.qa] 11 Dec 2002

Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra

Combinatorial and physical content of Kirchhoff polynomials

Heterotic Flux Compactifications

Stochastic Loewner Evolution: another way of thinking about Conformal Field Theory

Transcription:

(Elliptic) multiple zeta values in open superstring amplitudes Johannes Broedel Humboldt University Berlin based on joint work with Carlos Mafra, Nils Matthes and Oliver Schlotterer arxiv:42.5535, arxiv:57.2254 Selected Topics in Theoretical High Energy Physics tbilisi, sakartvelo, September 2 st, 25

Introduction Goal: scattering amplitudes/cross sections in a field or string theory standard method: Feynman/worldsheet graphs, useful and cumbersome alternative idea: add symmetry obtain a more symmetric/constrained theory learn about structure remove symmetry what remains typical results: new language: special functions for particular theory (e.g. spinor-helicity for massless theories) recursion relations: relate N-point to (N )-point best scenario: avoid Feynman calculations completely/s-matrix approach This talk: Open string theory as a simple (and very symmetric) testing ground tree-level: polylogarithms (language) and Drinfeld associator (recursion) one-loop elliptic iterated integrals (language) and elliptic multiple zeta values Outlook: link to number theory/algebraic geometry Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes /6

State of the art: open string theory Tree-level: Calculation of all amplitudes based on multiple polylogarithms and multiple zeta values and the algebraic structure of string corrections at tree-level. Broedel, Schlotterer [ Stieberger ] [Goncharov][Brown][Zagier] [ Schlotterer Stieberger ] Broedel, Schlotterer Drinfeld associator avoids necessity of solving integrals at all.[ Stieberger, Terasoma] Complete calculation boiled down to recursive application of linear algebra. Loop-level: calculation based on elliptic iterated integrals and elliptic multiple zeta Broedel, Mafra values [ Broedel Matthes, Schlotterer][ Matthes, Schlotterer] no analogue of the Drinfeld method so far: integrals can not be replaced completely yet... Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 2/6

Why open string theory? Iterated integrals are essential in calculations in field and string theory: same building blocks field theory: multiple polylogarithms at loop level. Divergences appear. string theory: multiple polylogarithms at tree level. No divergences. field theory: elliptic iterated integrals make an appearance in particular Feynman Adams, Bogner diagrams. [ Weinzierl ][ Caron-Huot Larsen ] string theory: one-loop amplitudes are natural for elliptic iterated integrals. field theory results can be obtained from open string theory in the low-energy limit. After all, string theory is a heavily constrained theory with an amazing degree of symmetry should produce simple answers. Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 3/6

Outline Tree-level One-loop z N = t z z 2 z N 2 N 2 i=2 i+ dz i multiple polylogarithms G(a,a 2,..., a n ; z) = dt z N t a G(a 2,..., a n ; t) partial fraction multiple zeta values ζ Drinfeld method - no integrals z z 2 z N z N N i+ dz N dz i δ(z ) i= elliptic iterated integrals Γ ( n n 2... n r a a 2... a r ; z) = dt f (n ) (t a ) Γ ( n 2... n r a 2... a r ; t) Fay-identities elliptic multiple zeta values ω elliptic (KZB) associator? Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 4/6

Tree-level, basics N-point tree-level open-string amplitude: Mafra, Schlotterer [Veneziano]... [ Stieberger ] A open string = F.A YM dependence on external states in A YM F = F (s ij ), s ij = α (k i + k j ) 2 coefficients are multiple zeta values (MZVs) F,2,...,N = N 2 i=2 N 2 i=2 i+ i+ dz i Multiple polylogarithms G(a, a 2,..., a n ; z) = dz i N i<j z i a i z ij sij { s2 z 2 N i<j z ij sij }{{} expand... ( s3 + s ) 23... z 3 z 23 N i<j n ij= z N = z z 2 z N 2 z N ( s,n 2 +... + s N 3,N 2 z,n 2 z N 3,N 2 (ln z (s ij ) nij ij ) nij n ij! }{{} multiple polylogs dt t a G(a 2,..., a n ; t), G(; z) =, G( a; ) = G(; ) = G(,,..., ; z) = }{{} w! (ln z)w G(,..., ; z) = }{{} w! lnw ( z) w w Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 5/6 ) }

N 2 i+ N dz i (s ij ) n ij G({,, z l }, z k ) i=2 z i a i i<j n ij = }{{} integrate step by step... N (s ij ) n ij G({, }, ) i<j n ij = }{{} rewrite polylogs as multiple ζ s ζ n,...,n r = k n <k < <k r r knr = ( ) r G(,,...,,,...,,,...,, ; ) = ζ }{{}}{{} (w) n r n 5-point-example: F (23) = ζ 2 (s 2 s 23 + s 2 s 24 + s 2 s 34 + s 3 s 34 + s 23 s 34 ) + ζ 3 (s 2 2s 23 + s 2 s 2 23 + s 2 2s 24 + 2s 2 s 23 s 24 + s 2 s 2 24 + ) + + ζ 3,5 (...) + Pretty cumbersome - isn t there an easier way to obtain the result? Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 6/6

Drinfeld-method Knizhnik-Zamolodchikov equation [ Knizhnik Zamolodchikov] ( dˆf(z ) e = e ) ˆF(z ). dz z z Broedel, Schlotterer [ Stieberger, Terasoma] z N = z C\{, }, Lie-algebra generators e, e Regularized boundary values C lim z z e ˆF(z ) z z 2 z N 2 z C lim z ( z ) e ˆF(z ) z N z N = z N = (N )-point z z z2 z z N N-point z z 2 z N 2 z z z N are related by the Drinfeld associator Φ: [Drinfeld][ Le Murakami][Furusho][ Drummond Ragoucy ] C = Φ(e, e ) C, Φ(e, e ) = w[e, e ]ζ (w) w {,} Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 7/6

Collect tree-level results Tree-level One-loop z N = t z z 2 z N 2 N 2 i=2 i+ dz i multiple polylogarithms G(a,a 2,..., a n ; z) = dt z N t a G(a 2,..., a n ; t) partial fraction multiple zeta values ζ Drinfeld method - no integrals z z 2 z N z N N i+ dz N dz i δ(z ) i= elliptic iterated integrals Γ ( n n 2... n r a a 2... a r ; z) = dt f (n ) (t a ) Γ ( n 2... n r a 2... a r ; t) Fay-identities elliptic multiple zeta values ω elliptic (KZB) associator? Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 8/6

One-loop open string topologies: all genus-one worldsheets with boundaries. here: cylinder with insertions on one boundary only: Im(z) = one imaginary parameter: τ General form of the integral: t z z 2 z N z N A -loop string (, 2, 3, 4) = s 2s 23 A tree YM(, 2, 3, 4) I 4pt (, 2, 3, 4)(τ) dτ I 4pt (, 2, 3, 4)(τ) 4 3 2 dz 4 dz 3 dz 2 dz δ(z ) 4 [ χjk (τ) ] s jk j<k }{{} Koba-Nielsen Green s function of the free boson on a genus-one surface with modulus τ: ln χ ij (τ) zij =τx ij Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 9/6

Compare tree-level N 2 i=2 i+ dz i z i a i N i<j n ij = n ij! (s ij) n ij (ln z ij ) n ij }{{} multiple polylogs with one-loop situation: N dz N i= i+ Suitable (iterated) object: N dz i δ(z ) n i<j n ij = ij! (s ij) n ij (ln χ ij (τ)) n ij }{{}??? ln χ ij (τ) = i z j dw f () (w z j, τ) Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes /6

Natural weights for differentials on an elliptic curve: [Enriquez][ Brown Levin ] f (n) (z, τ) = f (n) (z +, τ) and f (n) (z, τ) = f (n) (z + τ, τ). Explicitly: (simplification in our situation because Im(z) = ) f () (z, τ) f (2) (z, τ) 2 Parity: f (n) ( z, τ) = ( ) n f (n) (z, τ) f () (z, τ) ln θ (z, τ) + 2πi Imz Imτ [( ln θ (z, τ) + 2πi Imz ) 2 + 2 ln θ (z, τ) θ (, τ) ] Imτ 3 θ (, τ) Relation to Eisenstein Kronecker-series: [Kronecker][ Brown Levin ] ( αω(z, α, τ) α exp F (z, α, τ) θ (, τ)θ (z + α, τ) θ (z, τ)θ (α, τ) 2πiα Im(z) Im(τ) ) F (z, α, τ) =, f (n) (z, τ)α n n= Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes /6

Elliptic iterated integrals (suppress τ-dependence from here... ) Γ ( n n 2... n r a a 2... a r ; z) dw f (n) (w a ) Γ ( n 2... n r a 2... a r ; w) can rewrite any integral 234... into an elliptic iterated integral. Products of differential weights (tree-level) partial fraction: dw w a w a 2 (w a )(w a 2 ) = (w a )(a a 2 ) + (w a 2 )(a 2 a ) Products of differential weights (one-loop) Fay identities dw f (n ) (w x)f (n 2) (w) f () (w x)f () (w) =f () (w x)f () (x) f () (w)f ( + f (2) (w) + f (2) (x) + f (2) (w The Fay identity is a form of the trisecant equation for Eisenstein Kronecker series: F (z, α )F (z 2, α 2 ) = F (z, α + α 2 )F (z 2 z, α 2 ) + F (z 2, α + α 2 )F (z z 2, α ) Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 2/6

Elliptic multiple zeta values (emzv s) ω(n, n 2,..., n r ) f (n) (z )dz f (n2) (z 2 )dz 2... f (nr) (z r )dz r Four-point result with z i z i+ = Γ(n r,..., n 2, n ; ) = Γ ( nr n r... n... ; ) I 4pt (, 2, 3, 4)(τ) = ω(,, ) 2 ω(,,, ) (s 2 + s 23 ) β 5 = 4 3 + 2 ω(,,,, ) ( s 2 2 + s 2 23) 2 ω(,,,, ) s2 s 23 + β 5 (s 3 2 + 2s 2 2s 23 + 2s 2 s 2 23 + s 3 23) + β 2,3 s 2 s 23 (s 2 + s 23 ) + O(α 4 ) [ ω(,,,,, 2) + ω(,,,,, ) ω(2,,,,, ) ζ2 ω(,,, ) ] β 2,3 = 3 ω(,,,, 2, ) 3 2 ω(,,,,, 2) 2 ω(,,,,, ) 2 ω(2,,,,, ) 4 3 ω(,,,,, 2) 3 ζ 2 ω(,,, ) Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 3/6

Comparison Tree-level One-loop z N = t z z 2 z N 2 N 2 i=2 i+ dz i multiple polylogarithms G(a,a 2,..., a n ; z) = dt z N t a G(a 2,..., a n ; t) partial fraction multiple zeta values ζ Drinfeld method - no integrals z z 2 z N z N N i+ dz N dz i δ(z ) i= elliptic iterated integrals Γ ( n n 2... n r a a 2... a r ; z) = dt f (n ) (t a ) Γ ( n 2... n r a 2... a r ; t) Fay-identities elliptic multiple zeta values ω elliptic associator? [ Knizhnik, Bernard Zamolodchikov ] Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 4/6

Summary emzvs are natural language for one-loop amplitudes in open string theory full amplitude only after τ-integration and consideration of other topologies emzvs might not be the only ingredient: Euler sums? open-string result does not contain divergent emzvs x What else? emzvs: can be represented as iterated Eisenstein integrals iterated Eisenstein integrals nicely related to special derivation algebra, [Pollack] available cusp forms on the elliptic curve number of basis emzvs [Brown] number of basis emzvs + canonical choice known [Hain][ Broedel, Matthes Schlotterer ] using our formalism, one can derive new relations in the derivation algebra u, which match the known pattern of cusp forms numerous relations for emzvs: https://tools.aei.mpg.de/emzv x Goal closed/recursive form of the integrand for the one-loop open-string amplitude in terms of iterated Eisenstein integrals (analogue of Drinfeld-method) Adams, Bogner relation to functions ELi occurring in [ Weinzierl ] Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 5/6

Thanks! Johannes Broedel: (Elliptic) multiple zeta values in open superstring amplitudes 6/6