arxiv: v1 [math.ac] 14 Sep 2016

Similar documents
Current Advances. Open Source Gröbner Basis Algorithms

arxiv: v1 [math.ac] 14 Nov 2018

Signature standard bases over principal ideal rings

Computation of the Minimal Associated Primes

Signature-based algorithms to compute Gröbner bases

Modular Algorithms for Computing Minimal Associated Primes and Radicals of Polynomial Ideals. Masayuki Noro. Toru Aoyama

SOLVING VIA MODULAR METHODS

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Standard Bases for Linear Codes over Prime Fields

Depth and Stanley depth of the canonical form of a factor of monomial ideals

Problem Set 1 Solutions

4 Hilbert s Basis Theorem and Gröbner basis

POLYNOMIAL DIVISION AND GRÖBNER BASES. Samira Zeada

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields

Primary Decomposition

Groebner Bases and Applications

Polynomials, Ideals, and Gröbner Bases

The F 4 Algorithm. Dylan Peifer. 9 May Cornell University

M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY REVISION SOLUTIONS

Gröbner Bases over a Dual Valuation Domain

Gröbner Bases. eliminating the leading term Buchberger s criterion and algorithm. construct wavelet filters

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION

Various algorithms for the computation of Bernstein-Sato polynomial

Section III.6. Factorization in Polynomial Rings

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 27 January. Gröbner bases

Gröbner Bases & their Computation

Abstract Algebra for Polynomial Operations. Maya Mohsin Ahmed

Understanding and Implementing F5

8 Appendix: Polynomial Rings

Anatomy of SINGULAR talk at p. 1

A (short) survey on signature-based Gröbner Basis Algorithms

Groebner Bases, Toric Ideals and Integer Programming: An Application to Economics. Tan Tran Junior Major-Economics& Mathematics

Quadrics Defined by Skew-Symmetric Matrices

Grobner Bases: Degree Bounds and Generic Ideals

On the minimal free resolution of a monomial ideal.

On the relation of the Mutant strategy and the Normal Selection strategy

Journal of Symbolic Computation. The Gröbner basis of the ideal of vanishing polynomials

Unit 3 Factors & Products

Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes

Sparse Polynomial Multiplication and Division in Maple 14

Section 1.1 Notes. Real Numbers

Groebner Bases in Boolean Rings. for Model Checking and. Applications in Bioinformatics

Dimension Computations in Non-Commutative Associative Algebras

QR Decomposition. When solving an overdetermined system by projection (or a least squares solution) often the following method is used:

Lecture 1. (i,j) N 2 kx i y j, and this makes k[x, y]

Algorithms for computing syzygies over V[X 1,..., X n ] where V is a valuation ring

On the BMS Algorithm

A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

New Gröbner Bases for formal verification and cryptography

SYMMETRIC POLYNOMIALS

An Efficient Algorithm for Computing Parametric Multivariate Polynomial GCD

S-Polynomials and Buchberger s Algorithm

An Improvement of Rosenfeld-Gröbner Algorithm

Non-commutative reduction rings

Math 4370 Exam 1. Handed out March 9th 2010 Due March 18th 2010

Singular in Sage. MCS 507 Lecture 40 Mathematical, Statistical and Scientific Software Jan Verschelde, 23 November 2011

Numerical computation of Gröbner bases

GRÖBNER BASES AND POLYNOMIAL EQUATIONS. 1. Introduction and preliminaries on Gróbner bases

Lecture 2: Gröbner Basis and SAGBI Basis

Gröbner Bases. Applications in Cryptology

arxiv: v3 [math.ac] 6 Jan 2010

Tangent cone algorithm for homogenized differential operators

Lecture 15: Algebraic Geometry II

Interval Gröbner System and its Applications

The minimal components of the Mayr-Meyer ideals

Slimgb. Gröbner bases with slim polynomials

Local properties of plane algebraic curves

Sylvester Matrix and GCD for Several Univariate Polynomials

Algebraic Expressions

Algorithmic properties of polynomial rings

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

Solutions of exercise sheet 11

A gentle introduction to Elimination Theory. March METU. Zafeirakis Zafeirakopoulos

Computing syzygies with Gröbner bases

Localization. Introduction. Markus Lange-Hegermann

5 The existence of Gröbner basis

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form

PREMUR Seminar Week 2 Discussions - Polynomial Division, Gröbner Bases, First Applications

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

where c R and the content of f is one. 1

NON-COMMUTATIVE POLYNOMIAL COMPUTATIONS

ABSTRACT. Department of Mathematics. interesting results. A graph on n vertices is represented by a polynomial in n

The following can also be obtained from this WWW address: the papers [8, 9], more examples, comments on the implementation and a short description of

Polynomial multiplication and division using heap.

Gröbner Bases: A Short Introduction for Systems Theorists

Polynomial Rings. i=0

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 6. Unique Factorization Domains

1 xa 2. 2 xan n. + c 2 x α 2

2. Intersection Multiplicities

Computing Free Resolutions in Macaulay2

Comparison between XL and Gröbner Basis Algorithms

Cellular Binomial Ideals. Primary Decomposition of Binomial Ideals

Letterplace ideals and non-commutative Gröbner bases

21073 Hamburg, GERMANY

1. Algebra 1.5. Polynomial Rings

Computer Algebra: General Principles

The least element is 0000, the greatest element is 1111.

Extremal Behaviour in Sectional Matrices

Transcription:

NEW STRATEGIES FOR STANDARD BASES OVER Z arxiv:1609.04257v1 [math.ac] 14 Sep 2016 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU Abstract. Experiences with the implementation of strong Gröbner bases respectively standard bases for polynomial rings over principal ideal rings are explained: different strategies for creating the pair set, methods to avoid coefficient growth and a normal form algorithm for non-global orderings. 1. Introduction The aim of this paper is to explain our experience in implementing the strong Gröbner bases (resp. standard bases) algorithm for polynomial rings over principal ideal rings. We use the following notation (for more details see [GP]). Definition 1. Let Mon(x 1,...,x n ) be the set of monomials in n N variables x 1,...,x n. We denote by x the set of all variables and for α = (α 1,...,α n ) N n we set x α := x α1 1... xαn n. A monomial ordering < is a total ordering on Mon(x) satisfying the following property x α < x β = x γ x α < x γ x β for all α,β,γ N n. A monomial ordering is called global if 1 = x 0 x α for all α N n. A monomial ordering is called local if 1 = x 0 x α for all α N n. A monomial ordering is called mixed if there is α,β N n such that x α < 1 < x β. Definition 2. Let < be a monomial ordering on Mon(x), R be a ring and f R[x] := R[x 1,...,x n ] a polynomial. We can write f in a unique way L f = c i x α(i), 0 c i R and α (i) N n for 1 i L such that x α(1) <... < x α(l). We define the length of f denoted by l(f) = L, the leading term denoted by LT(f) = c L x α(l), the leading coefficient denoted by LC(f) = c L, the leading monomial denoted by LM(f) = x α(l), the tail of f denoted by tail(f) = f LT(f), the degree of f denoted by deg(f) = max 1 i L the ecart of f denoted by ecart(f) = deg(f) deg ( LT(f) ). i=1 { α (i) 1 +...+α(i) n } and Definition 3. Let I R[x] be an ideal. The leading ideal of I is L < (I) = {LT(f) f I}. The leading monomial ideal of I is LM < (I) = {LM(f) f I}. The leading ideal for a set of polynomials S := {f 1,...,f m } is defined to be the leading ideal of the ideal generated by S. 1

2 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU From now on, if the monomial ordering is clear from the context, we will only write L(I) (respectively LM(I)) instead of L < (I) (respectively LM < (I)). Definition 4 (Standard Bases). A standard basis of an ideal I R[x] with respect to a fixed monomial ordering < is a finite set S I such that L(I) = L(S). S is a strong standard basis if additionally it satisfies the following property: f I, g S such that LT(g) LT(f). Next we present a simple Buchberger algorithm for computing standard bases in polynomial rings over principal ideal rings. For this we introduce some more basic notions. In the following, let R be a ring. Usually we will take R to be Z or Z r := Z /rz where r Z is not a prime number. Let f,g R[x] be two polynomials such that with LT(f) = c f m f and LT(g) = c g m g. f = c f m f +... g = c g m g +... Definition 5. We define several important polynomials used in the strong standard bases theory. The s polynomial (or s pair) of f and g, denoted by s-poly(f,g) = lcm(c f,c g )lcm(m f,m g ) f lcm(c f,c g )lcm(m f,m g ) g. c f m f c g m g Note that the leading terms will cancel out. Since R is a principal ideal ring, we have that c f,c g = c. Let c = d f c f +d g c g. The strong polynomial (or the gcd polynomial, gcd pair, strong pair) of f and g denoted by gcd-poly(f,g) = d f lcm(m f,m g ) f + d glcm(m f,m g ) g. m f m g Notice that LT ( gcd-poly(f,g) ) = c lcm(m f,m g ). In case of rings with zero divisors, the extended s polynomial of f denoted by ext-poly(f) = Ann(c f ) f = Ann(c f ) tail(f). Note that if LC(f) is not a zero divisor then ext-poly(f) = 0. Remark 1. Note that in the definition of gcd pairs d f and d g are not uniquely determined. Let two polynomials f,g R[x], f = c f m f +..., g = c g m g +..., such that c = c f,c g. Let d f d f,d g d g such that d f c f +d g c g = c = d f c F +d g c g. Denote by P and Q the gcd polynomial constructed with d f,d g, respectively d f and d g. Then P = Q+α s-poly(f,g) for an α R. Note that if c f,c g = c f, then we can take d f = 1 and d g = 0. Therefore gcd-poly(f,g) = m f, for the monomial m = lcm(m f,m g ). In other words if one of the leading coefficients divides the other, then the gcd-poly is equal to a multiple of the m f

NEW STRATEGIES FOR STANDARD BASES OVER Z 3 initial polynomial and, as we will later see, it brings no new information. We call such a gcd polynomial redundant. Algorithm 1 (Buchberger s algorithm). Let R be a principal ideal ring, < a monomial ordering on R[x]. Algorithm 1 std(ideal I) Require: I = f 1,...,f r R[x] an ideal Ensure: S = {g 1,...,g t } is a strong standard basis of I 1: S = {f 1,...,f r }; 2: L = {s-poly(f i,f j ) i < j} {gcd-poly(f i,f j ) i < j} {ext-poly(f i )}; 3: while L do 4: choose h L and 1 reduce it with S; 5: if h 0 then 6: S = S {h}; 7: L = L {s-poly(g,h) g S} {gcd-poly(g,h) g S} {ext-poly(h)}; return S In the second section we compare two implementations of Buchberger s algorithm. They are distinguished in the modifications of step 7 in Algorithm 1. In the third section we explain a method to avoid coefficient growth. The fourth section describes the normal form procedure for local orderings which is implemented in the standard basis algorithm. The normal form procedure used for polynomial rings over fields does not terminate for local orderings over rings. 2. ALL vs. JUST In this section let R = Z. D. Lichtblau proved in [L, Theorem 2] that in Algorithm 1 it is in fact enough to take for a pair (g,h) either the s-poly or the gcd-poly. Note line 7 of the pseudo-code where we add s-poly(g,h) and gcd-poly(g,h) to the pair list L. Instead of this, if gcd-poly(g,h) is not redundant then we only add gcd-poly(g,h) and if gcd-poly(g,h) is redundant then we only add s-poly(g, h). We name the usual strategy in which we consider all pairs by ALL and the one in which we consider just one pair simply by JUST. At a first glance fewer pairs could be interpreted as a faster computation and less used memory. This turns out to be wrong, since the few pairs from JUST will generate many pairs later in the algorithm. We have compared the timings of the two different strategies for random examples. In most cases, ALL strategy was faster than JUST. We found examples for which ALL was 38000 times faster than JUST and examples where JUST was 2300 times faster than ALL. In the tables below we present the different timings we obtained for our examples. All of the timings are represented in milliseconds. The input ideals can be found in the Appendix. 1 Normal form of h with respect to S

4 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU ALL time JUST time Factor Example A:1 6630 251481340 38000 Example A:2 40 63 740 1 600 Example A:3 51 570 6 134 060 119 Example A:4 4 400 522 340 118 Example A:5 250 19 080 76 Example A:6 4 110 271 460 66 Example A:7 56 720 2 676 080 47 Example A:8 190 8 340 44 Example A:9 1 131 470 39 694 950 35 Example A:10 110 3 020 27 Table 1. Best examples for ALL strategy ALL time JUST time Factor Example B:1 1 696 700 730 2 324 Example B:2 252 950 450 562 Example B:3 4 090 30 136 Example B:4 35 160 500 70 Example B:5 3 690 110 33 Table 2. Best examples for JUST strategy All these examples where randomly generated. We considered the ideals over Z[x, y, z] with the degree reverse lexicographical ordering. We searched for such examples over finite rings, like Z 2 100 or Z 10 200 but we were unable to find interesting examples over these finite rings. The reason why we found examples over Z is that here there are no bounds for coefficients. In order to give an idea of how huge the coefficients can be in the standard bases computation over Z, we computed Example B:1 over Z 10 200 with the ALL strategy and got the result after 8 seconds; over Z 10 1000 we obtained the result after 648 seconds (10 minutes) and over Z we got the result after almost 30 hours. One can imagine how big the coefficients are when computing over Z[x]. This is the main reason why in some cases, the computation of a standard basis over Z will be slow. 3. Huge coefficients over the integers One of the most common problems when computing over Z[x] is that the coefficients will rapidly increase. If during the algorithm we have two polynomials with big coefficients, when computing their s polynomial (or strong polynomials) we multiply them with the corresponding monomials, and hence the coefficients will become larger. This will slow down the algorithm and increase the memory usage. In order to keep the coefficients small we have implemented the following algorithm. Algorithm 2 (preintegercheck). Let I = f 1,...,f r be an ideal in Z[x] and < a fixed monomial ordering. We use the following idea to get access to a constant or a monomial (if it exists) from I. This is useful when computing over Z because adding this constant to the generating system of I before starting the standard basis algorithm will keep the coefficients small.

NEW STRATEGIES FOR STANDARD BASES OVER Z 5 The main idea is described as follows: we want to compute a standard basis over Z[x]. We will first compute the standard basis over Q[x]. If the result is 1, then we know there is a non-zero integer in the ideal. Algorithm 2 preintegercheck(ideal I) Require: I = f 1,...,f r Z[x] an ideal Ensure: {f 1,...,f r,c m}, c Z, m monomial; m = 1 and c 0 if I Z 0. 1: J = {1,f 1,...,f r } 2: compute S, a standard basis of I over Q[x] r 3: compute the syzygies Z Q[x] ε i of J i=0 4: if S = 1 then 5: search in Z for a syzygy where the 0 component consists of just a constant c ε 0 return I {c} 6: else 7: search in Z for a syzygy where the 0 component consists of just a term c m ε 0 8: if such monomial is found then return I {c m} return I Note that Algorithm 2 is very costly and if the algorithm does not find a constant or monomial, it increases the standard basis run-time without bringing any new information. However in the other cases, the algorithms run-time will improve because we have a bound on the coefficients. This is very useful over Z since the biggest problem proves to be the size of the coefficients that appear during the standard basis computation. In case of parallel systems, one could run both versions (with the preintegercheck and without) and stop as soon as one version finishes. Example 1. In this example we use the degree reverse lexicographical ordering. Let I = 3 x+4,xy +9,x y +8 be an ideal in Z[x,y]. We compute the syzygies Z Q[x,y] of J = {1,I} =: {1,f 1,f 2,f 3 }. The syzygies of J are 7 ε 1 (x+4) ε 2 +ε 3 +x ε 4, (y 4) ε 1 ε 2 +ε 4 and (x+4) ε 1 ε 2. Indeed, 7 1+( x 4) f 1 +1 f 2 +x f 3 = 0. Since the standard basis of I over Q[x,y] is 1, it is expected that one of the syzygies has on the first component a constant in this case it is the first syzygy. We continue by computing the standard basis of 7,I over Z[x,y]: {7,x+4,y 4}. This was a very simple example. Now consider the ideal I = f 1,...,f 70 Z[x,y,z] and consider the degree reverse lexicographical ordering. The f i can be found in the Appendix. Despite of how complicated the ideal I seems to be, its standard basis consists of few small polynomials. We give below the Gröbner basis S of I: i=0 S = { 18,6z 12,2y 4,2z 2 +4z +8,yz +z +3,3x 2 z 15x 2,x 2 y +3x 2 z +x 2, x 3 +10z,x 2 z 2 4x 2 z 11x 2}

6 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU Using the new strategy described in Algorithm 2, we compute the standard basis over Q[x,y,z] and see that it is equal to 1. Hence the ideal contains an integer. Using Singular s syzygy procedure syz, we are not lucky enough to already get access to 18, but a multiple of it: 6133248. This seems to be a big number, but if we add this integer to the generators of I the computations will drastically speed up. We show how 6133248 can be generated using f 1,...,f 70. 6133248= ( 231913440x 6 z + 9838752x 3 y 4599936x 3 z + 69696y) f 1 + ( 1584y 3 + 13464y 2 + 12672y) f 2 + ( 115956720x 6 z + 1756920x 3 y 1724976x 3 z 40409160x 3 + 52272y + 200376) f 3 + ( 38652240x 3 y 3 + 38652240x 3 y 2 + 154608960x 3 + 1149984y 2 + 4983264y + 3066624) f 4 + ( 2551047840x 6 z + 38652240x 3 y 37949472x 3 z 889001520x 3 + 574992y + 2779128) f 5 + ( 159720x 3 y 2 159720x 3 y 319440x 3 2376y 2 10296y 12672) f 10 + ( 79860x 4 + 110xy 3 + 110xy 2 + 220xy 2508x) f 11 + (26136) f 13 + (3630x 4 y 2 + 3630x 4 y + 7260x 4 + 54xy 2 + 154xy + 96x) f 14 + (1540xy + 517x) f 15 + ( 792) f 16 + (425920x) f 18 + ( 115956720x 3 y 2 115956720x 3 y 231913440x 3 1724976y 2 7474896y 4599936) f 19 + ( 1756920x 4 + 2420xy 3 + 2420xy 2 + 4840xy 132616x) f 26 + (851840x) f 27 + (287496) f 28 + ( 38720x) f 38 4. The normal form procedure It is well-known that the usual normal form procedure in Buchberger s algorithm does not terminate for local orderings (cf. [GP], [M], [MPT]). For polynomial rings over a field T. Mora solved the problems introducing a larger set T of polynomials for the reduction. For polynomial rings over Z we need not only to add the polynomials with large ecart to T but also the corresponding gcd polynomials. Algorithm 3 (normal form procedure). The following algorithm computes the normal form over rings in case of local and mixed orderings. Algorithm 3 reduce(f, G) Require: f R[x] and a finite subset G R[x],< ordering Ensure: h R[x], a weak normal form of f w.r.t. G, i.e. h = uf g Gc g g,c g R[x],u R[x] < unit,lm(f) LM(c g g) for all g such that c g g 0 and h = 0 or LT(h) L(G). 1: h = f 2: T = G 3: while h 0 and there is a g T with LT(g) LT(h) do 4: choose such g with minimal ecart 5: if ecart(g) > ecart(h) then 6: T = T {h} {gcd-poly(h,t) t T} 7: h = s-poly(h,g) return h

NEW STRATEGIES FOR STANDARD BASES OVER Z 7 The proof that Algorithm 3 terminates and gives the expected result is given by Lichtblau [L] in the case of global orderings. The termination and correctness of the algorithm for polynomial rings over a field with non-global orderings can be found in [GP]. Combining the two proofs gives termination and correctness for Algorithm 3 in case of polynomial rings over Z and non-global orderings. Example 2. Let Z[x, y] with the local degree reverse monomial ordering. Consider the ideal I = 6+y +x 2,4+x. Then a standard basis of I with respect to the ordering is S = { 2 x+y +x 2,x 2y x 2 xy x 3}. T = { 2 x+y +x 2,x 2y x 2 xy x 3}, (1) 4+x 2 x+y+x 2 3x 2y 2x 2 { } T = T x+2y+3x 2 x 2y x 2 xy+x 3 4y+x 2 +3xy +3x 3 2 x+y+x 2 x 2 +5xy 2y 2 +3x 3 2x 2 y x+2y+3x 2 3xy 2y 2 2x 2 y 3x 2y 2x 2 0 At the end of the reduction T = { 2 x+y +x 2,x 2y x 2 xy x 3,4+x,3x 2y +3x 2,x+2y +3x 2}. Note that Algorithm 3 does not terminate in the example above if the gcd polynoamial x+2y+3x 2 would not be added to T. 5. Appendix In the following tables we print the ideals corresponding to the examples presented when comparing the ALL vs JUST timings in Section 2.

8 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU Example A:1 Example A:2 Example A:3 Example A:4 Example A:5 Example A:6 Example A:7 Example A:8 Example A:9 Example A:10 Generators for ideal 17 x 2 y, 22 y 3 z + 3 x 2 z 2 + 28 y 2 z 2 + 9 yz 2 + 83 x 2 + 13 yz, 66 y 3 z + 63 xyz 2 + 85 z 3 27 xyz + 13 x 2 + 89 y 2 + 42 xz, 35 x 3 + 68 xy, 44 x 3 + 13 y 3 + 81 y 2 z + 4 yz 2 98 x 3 y + 45 yz 3, 16 xy 3 + 50 x 2 y + 45 y 2 + 82 z 2, 9 x 3 y + 49 x 2 yz + 61 y 2 z + 52 z 3 25 y 3, 60 y 3 + 12 xyz + 54 y 2 z + 98 yz 2 + 35 x 2 + 88 xy + 19 z 2, 87 x 2 y + 96 x 2 76 y 2 z + 61 y 2 + 51 yz + 19 z 2, 31 x 3 + 3 xy 2 + 70 y 2 z, 84 x 3 + 30 x 2 z + 44 xz 19 x 3 + 2 xy + 29 y 2, 9 xy 2 + 42 y 3 + 2 yz 2, 54 xy 2 + 83 x 2 z + 98 xy + 78 yz 72 x 3 y + 50 x 2 yz, 64 x 3 z + 30 x 2 yz + 74 x 3 + 38 xy 2 + 74 z 3, 76 x 2 y 2 + 13 y 2 + 40 z 2 27 xz 3 + 87 y 2 z + 3 z 2, 67 x 3 z + 42 y 3 z + 67 x 2 y + 90 yz 2 + 73 xy, 38 x 3 y + 69 x 2 yz 21 x 3 y + 18 x 3 z + 45 x 2 yz + 100 xy 2 z + 43 yz, 85 x 2 y + 93 xy 2, 14 y 2 z 2 + 6 x 2 y + 91 z 2 69 y 2, 47 x 3 y + 82 xyz 2 + 74 yz 3 + 55 xyz + 96 xz 2 + 46 x 2, 16 xy 2 z + 17 z 4 + 36 yz 2 Table 3. Examples for ALL Strategy

98 y 3 Table 4. Examples for JUST Strategy NEW STRATEGIES FOR STANDARD BASES OVER Z 9 Example B:1 Example B:2 Example B:3 Example B:4 Example B:5 Generators for ideal 6 x 3 z + 29 x 2 z + 42 xy, x 3 z + 47 x 2 yz + 28 xz 2 + 46 x 2, 96 z 3 9 x 2 y 2 + 51 x 3 z + 10 z 3 + 28 x 2 + 7 y 2, 43 x 3 y + 3 x 2 z 2 + 86 xyz 2 + 24 z 4 + 67 x 2 z + 68 yz 2 + 27 xy, 23 xz 2 50 xz 3 + 49 yz 2 + 15 z 2, 2 x 3 y + 16 y 3 z + 74 y 3 + 53 x 2, 4 xy 2 57 xyz 2 + 32 y 3 + 26 yz 2 + 24 z 2, 27 y 4 + 33 y 3 z + 94 z 2, 52 x 2 z 91 y 4 + 20 x 3 z + 34 x 2, 38 xyz 2 + 18 x 3 + 95 x 2 z + 82 yz, The ideal for Example 1: We consider over Z[x, y, z] the degree reverse lexicographical ordering and the ideal I generated by the following 70 polynomials f 1,...,f 70. f 1 = 42 x 3 z +y 2 z yz + 11 y f 2 = y 3 z 2 y 2 z 2 + 11 y 2 z + 484 f 3 = y 4 z y 3 z 10648 x 3 + 11 y 3 44 y 2 + 44 y f 4 = x 3 yz 2 2 f 5 = 11 x 3 y 2 z + 484 x 3 + 2 y 2 2 y f 6 = 117128 x 6 121 x 3 y 3 + 968 x 3 y 2 968 x 3 y + 2 y 4 4 y 3 + 2 y 2 f 7 = 121 x 6 z 3 +yz z + 11 f 8 = 2178 x 2 y 2 z 3 1452 x 2 yz 3 + 15972 x 2 yz 2 f 9 = 1452 x 2 y 3 z 2 1452 x 2 y 2 z 2 + 7986 x 2 y 2 z f 10 = 726 x 3 y 2 z 2 + 484 x 3 yz 2 +y 4 z 2 5324 x 3 yz y 3 z 2 + 22 y 3 z 11 y 2 z +121 y 2 f 11 = 2904 x 2 y 3 z 2 2178 x 2 y 2 z 2 + 23958 x 2 y 2 z + 351384 x 2 f 12 = 726 x 2 y 4 z 726 x 2 y 3 z + 7730448 x 5 + 31944 x 2 y 2 31944 x 2 y

10 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU f 13 = 968 x 3 y 3 z + 726 x 3 y 2 z 2 y 5 z 7986 x 3 y 2 + 4 y 4 z + 21296 x 3 y 22 y 4 2 y 3 z 10648 x 3 + 110 y 3 132 y 2 + 44 y f 14 = 95832 x 2 y 2 z 2 63888 x 2 yz 2 + 702768 x 2 yz f 15 = 63888 x 2 y 3 z 63888 x 2 y 2 z + 351384 x 2 y 2 f 16 = 5 y 6 z 2 + 9 y 5 z 2 88 y 5 z 4 y 4 z 2 + 253 y 4 z 363 y 4 264 y 3 z +968 y 3 + 88 y 2 z 484 y 2 f 17 = 726 x 5 z 3 6 x 2 y 2 z 3 + 3 x 2 yz 3 33 x 2 yz 2 f 18 = 726 x 5 yz 2 3 x 2 y 3 z 2 + 3 x 2 y 2 z 2 f 19 = 242 x 6 z 2 + 3 x 3 y 2 z 2 x 3 yz 2 + 22 x 3 yz f 20 = 9 x 2 y 3 z 4 + 6 x 2 y 2 z 4 66 x 2 y 2 z 3 f 21 = 6 x 2 y 4 z 3 + 6 x 2 y 3 z 3 33 x 2 y 3 z 2 f 22 = 4 x 3 y 3 z 3 2 x 3 y 2 z 3 + 33 x 3 y 2 z 2 f 23 = 12 x 2 y 4 z 3 + 9 x 2 y 3 z 3 31944 x 5 z 2 99 x 2 y 3 z 2 + 264 x 2 y 2 z 2 132 x 2 yz 2 f 24 = 3 x 2 y 5 z 2 + 3 x 2 y 4 z 2 63888 x 5 yz f 25 = 7 x 3 y 4 z 2 5 x 3 y 3 z 2 + 66 x 3 y 3 z 176 x 3 y 2 z + 88 x 3 yz f 26 = 15972 x 5 yz 2 66 x 2 y 3 z 2 + 33 x 2 y 2 z 2 363 x 2 y 2 z 15972 x 2 f 27 = 33 x 2 y 4 z + 33 x 2 y 3 z 351384 x 5 1452 x 2 y 2 + 1452 x 2 y f 28 = 5324 x 6 yz + 11 x 3 y 2 z + 121 x 3 y 2 968 x 3 y + 484 x 3 4 y 3 + 6 y 2 2 y f 29 = 99 x 2 y 4 z 3 + 66 x 2 y 3 z 3 726 x 2 y 3 z 2 4356 x 2 y 2 z 2 + 2904 x 2 yz 2 31944 x 2 yz f 30 = 66 x 2 y 5 z 2 + 66 x 2 y 4 z 2 363 x 2 y 4 z 2904 x 2 y 3 z + 2904 x 2 y 2 z 15972 x 2 y 2 f 31 = 11 x 3 y 4 z 2 + 22 x 3 y 3 z 2 8 y 4 z + 12 y 3 z 44 y 3 4 y 2 z + 22 y 2 f 32 = 132 x 2 y 5 z 2 + 99 x 2 y 4 z 2 702768 x 5 yz 1089 x 2 y 4 z 2904 x 2 y 3 z +2904 x 2 y 2 z 47916 x 2 y 2 f 33 = 33 x 2 y 6 z + 33 x 2 y 5 z 351384 x 5 y 2 1452 x 2 y 4 + 1452 x 2 y 3 f 34 = 22 x 3 y 5 z 11 x 3 y 4 z + 363 x 3 y 4 968 x 3 y 3 + 484 x 3 y 2 4 y 5 + 6 y 4 2 y 3 f 35 = 33 x 5 y 2 z 3 1452 x 5 z 2 + 12 x 2 y 2 z 2 6 x 2 yz 2 f 36 = 33 x 5 y 3 z 2 2904 x 5 yz f 37 = 33 x 6 y 2 z 2 8 x 3 y 2 z + 4 x 3 yz f 38 = 263538 x 5 y 2 z + 726 x 2 y 4 z 363 x 2 y 3 z 7730448 x 5 + 3993 x 2 y 3 31944 x 2 y 2 + 31944 x 2 y

NEW STRATEGIES FOR STANDARD BASES OVER Z 11 f 39 = 170069856 x 8 + 87846 x 5 y 3 1405536 x 5 y 2 + 363 x 2 y 5 + 1405536 x 5 y 3267 x 2 y 4 + 5808 x 2 y 3 2904 x 2 y 2 f 40 = 87846 x 6 y 2 468512 x 6 y + 363 x 3 y 4 + 234256 x 6 4235 x 3 y 3 + 5808 x 3 y 2 8 y 5 1936 x 3 y + 20 y 4 16 y 3 + 4 y 2 f 41 = 2108304 x 5 y 2 z 2 + 1089 x 2 y 5 z 2 + 1405536 x 5 yz 2 9438 x 2 y 4 z 2 15460896 x 5 yz + 7986 x 2 y 4 z + 14520 x 2 y 3 z 2 63888 x 2 y 3 z 5808 x 2 y 2 z 2 + 63888 x 2 y 2 z f 42 = 1405536 x 5 y 3 z + 726 x 2 y 6 z + 1405536 x 5 y 2 z 6534 x 2 y 5 z 7730448 x 5 y 2 +3993 x 2 y 5 + 11616 x 2 y 4 z 31944 x 2 y 4 5808 x 2 y 3 z + 31944 x 2 y 3 f 43 = 726 x 3 y 5 z 4598 x 3 y 4 z + 3993 x 3 y 4 + 5808 x 3 y 3 z 16 y 6 z 21296 x 3 y 3 1936 x 3 y 2 z + 40 y 5 z + 10648 x 3 y 2 88 y 5 32 y 4 z + 132 y 4 + 8 y 3 z 44 y 3 f 44 = 2811072 x 5 y 3 z + 1452 x 2 y 6 z + 2108304 x 5 y 2 z 12705 x 2 y 5 z 11595672 x 5 y 2 +11979 x 2 y 5 + 20328 x 2 y 4 z 127776 x 2 y 4 8712 x 2 y 3 z + 111804 x 2 y 3 f 45 = 702768 x 5 y 4 + 363 x 2 y 7 + 702768 x 5 y 3 3267 x 2 y 6 + 5808 x 2 y 5 2904 x 2 y 4 f 46 = 363 x 3 y 6 2299 x 3 y 5 + 2904 x 3 y 4 8 y 7 968 x 3 y 3 + 20 y 6 16 y 5 + 4 y 4 f 47 = 702768 x 8 z 2 726 x 5 y 3 z 2 + 2904 x 5 y 2 z 2 + 24 x 2 y 4 z 2 36 x 2 y 3 z 2 +12 x 2 y 2 z 2 f 48 = 1405536 x 8 yz + 726 x 5 y 4 z 5808 x 5 y 3 z + 5808 x 5 y 2 z f 49 = 726 x 6 y 3 z 3872 x 6 y 2 z + 1936 x 6 yz 16 x 3 y 4 z + 24 x 3 y 3 z 8 x 3 y 2 z f 50 = 15460896 x 8 yz 3993 x 5 y 4 z + 31944 x 5 y 2 z + 264 x 2 y 5 z 527076 x 5 y 2 396 x 2 y 4 z + 1452 x 2 y 4 + 132 x 2 y 3 z 726 x 2 y 3 f 51 = 7730448 x 8 y 2 + 3993 x 5 y 5 31944 x 5 y 4 + 31944 x 5 y 3 f 52 = 3993 x 6 y 4 21296 x 6 y 3 + 10648 x 6 y 2 88 x 3 y 5 + 132 x 3 y 4 44 x 3 y 3 f 53 = 1452 x 5 yz 4 + 726 x 5 z 4 7986 x 5 z 3 + 726 x 2 z 2 f 54 = 87846 x 8 z 3 726 x 5 y 2 z 3 + 726 x 5 yz 3 + 726 x 2 yz 726 x 2 z f 55 = 726 x 6 yz 3 363 x 6 z 3 + 3993 x 6 z 2 242 x 3 z +y 2 z 2 yz + 11 y +z 11 f 56 = 2178 x 5 y 2 z 5 + 1452 x 5 yz 5 15972 x 5 yz 4 f 57 = 1452 x 5 y 3 z 4 + 1452 x 5 y 2 z 4 7986 x 5 y 2 z 3 f 58 = 1089 x 6 y 2 z 4 726 x 6 yz 4 + 7986 x 6 yz 3 +y 3 z 2 3 y 2 z 2 + 11 y 2 z + 2 yz 2 22 yz f 59 = 2904 x 5 y 3 z 4 + 2178 x 5 y 2 z 4 23958 x 5 y 2 z 3 + 63888 x 5 yz 3 31944 x 5 z 3 31944 x 2 z

12 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU f 60 = 726 x 5 y 4 z 3 + 726 x 5 y 3 z 3 11595672 x 8 z 2 31944 x 2 y + 31944 x 2 f 61 = 1452 x 6 y 3 z 3 1089 x 6 y 2 z 3 + 11979 x 6 y 2 z 2 31944 x 6 yz 2 + 15972 x 6 z 2 +3 y 4 z 6 y 3 z + 33 y 3 + 3 y 2 z 121 y 2 + 132 y 44 f 62 = 726 x 8 z 5 + 3 x 2 yz 3 f 63 = 363 x 8 yz 4 + 3 x 2 y 2 z 2 3 x 2 yz 2 f 64 = 363 x 9 z 4 x 3 yz 2 x 3 z 2 f 65 = 15972 x 8 yz 4 2904 x 5 yz 3 + 1452 x 5 z 3 + 33 x 2 y 2 z 2 + 1452 x 2 z f 66 = 3993 x 8 y 2 z 3 + 527076 x 8 z 2 + 33 x 2 y 3 z 33 x 2 y 2 z + 1452 x 2 y 1452 x 2 f 67 = 7986 x 9 yz 3 + 1452 x 6 yz 2 726 x 6 z 2 + 11 x 3 y 2 z 22 x 3 yz + 4 y 2 6 y + 2 f 68 = 263538 x 8 y 2 z 3 1405536 x 8 yz 3 + 702768 x 8 z 3 5808 x 5 y 3 z 3 + 8712 x 5 y 2 z 3 2904 x 5 yz 3 + 702768 x 5 z 363 x 2 y 3 z + 2904 x 2 y 2 z 2904 x 2 yz f 69 = 255104784 x 1 1z 2 131769 x 8 y 3 z 2 + 1054152 x 8 y 2 z 2 1054152 x 8 yz 2 +702768 x 5 y 363 x 2 y 4 702768 x 5 + 3267 x 2 y 3 5808 x 2 y 2 + 2904 x 2 y f 70 = 131769 x 9 y 2 z 2 + 702768 x 9 yz 2 351384 x 9 z 2 + 2904 x 6 y 3 z 2 4356 x 6 y 2 z 2 +1452 x 6 yz 2 363 x 3 y 3 + 2299 x 3 y 2 2904 x 3 y + 8 y 4 + 968 x 3 20 y 3 +16 y 2 4 y References [S] Decker, W, Greuel G.-M., Pfister G., Schönemann, H., 2016, Singular 4-0-3 A computer algebra system for polynomial computations. Available at www.singular.uni-kl.de. [GP] Greuel G.-M., Pfister G., 2008. A Singular Introduction to Commutative Algebra, Springer-Verlag [L] Lichtblau D., 2012. Effective Computation of Strong Gröbner Bases over Euclidean Domains. Illinois J. of Math. 56(1), 177-194. [M] Mora T., 1982. An Algorithm to Compute the Equations of the Tangent Cone, LN Comp, 144, 158165. [MPT] Mora T., Pfister G., Traverso C., 1992. An Introduction to the Tangent Cone Algorithm, Advances in Computing Research, Issues in Robotics and Nonlinear Geometry, 6, 199270. [Pf] Pfister G., 1991. The Tangent Cone Algorithm and some Applications to Algebraic Geometry, Proceedings of the MEGA-Conference 1990, Birkhauser 94, 399-409. [Po] Popescu A., 2016. Signature Standard Bases over Principal Ideal Rings, PhD thesis, University of Kaiserslautern. [W] Wienand O., 2011. Algorithms for Symbolic Computation and their Applications - Standard Bases over Rings and Rank Tests in Statistics, PhD thesis, University of Kaiserslautern. Department of Mathematics, University of Kaiserslautern,, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany E-mail address: ederc@mathematik.uni-kl.de Department of Mathematics, University of Kaiserslautern,, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany E-mail address: pfister@mathematik.uni-kl.de Department of Mathematics, University of Kaiserslautern,, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany E-mail address: popescu@mathematik.uni-kl.de