Microfacet models for reflection and refraction

Similar documents
Microfacet models for reflection and refraction

Microfacet models for refraction through rough surfaces

Physics 107 HOMEWORK ASSIGNMENT #20

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

ENGI 4421 Probability & Statistics

Section 14 Limited Dependent Variables

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

Thermodynamics of Materials

Spring 2002 Lecture #17

Radiation Chapter 12 L8 (MMV031) Martin Andersson

Chapter 8. Polarization 8.1 The Nature of Polarized Light A. Linear Polarization Sum of two waves ( ) ( ) ( )

Physic 231 Lecture 33

Chapter 6 : Gibbs Free Energy

TRANSPORT MOMENTS. beyond the leading order. arxiv: Jack Kuipers. University of Regensburg. with. Gregory Berkolaiko.

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

Conduction Heat Transfer

BME 5742 Biosystems Modeling and Control

Grade 12 Physics Exam Review

Chapter 3, Solution 1C.

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Aerosols, Dust and High Spectral Resolution Remote Sensing

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

NUMBERS, MATHEMATICS AND EQUATIONS

Inference in Simple Regression

Module B3. VLoad = = V S V LN

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

Feedback Principle :-

Chapter 5 Geometrical Optics-Paraxial Theory

Lecture 18 Title : Fine Structure : multi-electron atoms

The Simple Linear Regression Model: Theory

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

Misc. ArcMap Stuff Andrew Phay

AP Physics Kinematic Wrap Up

Moderator & Moderator System

Analysis of ellipsometric data obtained from curved surfaces. J. Křepelka

Exercises H /OOA> f Wo AJoTHS l^»-l S. m^ttrt /A/ ?C,0&L6M5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA. tts^e&n tai-ns 5 2%-cas-hews^, 27%

ENGI 4430 Parametric Vector Functions Page 2-01

Aircraft Performance - Drag

Design of Analog Integrated Circuits

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS

sin sin Reminder, repetition Image formation by simple curved surface (sphere with radius r): The power (refractive strength):

Reprint (R34) Accurate Transmission Measurements Of Translucent Materials. January 2008

Introduction to Electronic circuits.

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid

Lucas Imperfect Information Model

EE 221 Practice Problems for the Final Exam

Scattering cross section (scattering width)

Chapter 3. AC Machinery Fundamentals. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Section 10 Regression with Stochastic Regressors

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Termisk Strålning; Thermal radiation

Regression with Stochastic Regressors

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

Chem 204A, Fall 2004, Mid-term (II)

Number Average Molar Mass. Mass Average Molar Mass. Z-Average Molar Mass

Five Whys How To Do It Better

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

(element) But, we do NOT know G!!! Correct, but not applicable! Free Energy Problems: o r. products. reactants. o f. reactants.

HANSEN SOLUBILITY PARAMETERS IN CHROMATOGRAPHIC SCIENCES ADAM VOELKEL, K. ADAMSKA POZNAŃ UNIVERSITY OF TECHNOLOGY, POLAND

Based on arxiv with Shohei Okawa (Nagoya Univ.)

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

Higher. Specimen NAB Assessment

Measurement of mode interaction due to waveguide surface roughness

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

ESTIMATION AND ANALYSIS OF SPECTRAL SOLAR RADIATION OVER CAIRO. M.M. Abdel Wahab x International Centre for Theoretical Physics, Trieste, Italy.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Homework 4. 1 Electromagnetic surface waves (55 pts.) Nano Optics, Fall Semester 2015 Photonics Laboratory, ETH Zürich

Conservation of Energy

Water vapour balance in a building moisture exposure for timber structures

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = +

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

Key component in Operational Amplifiers

NWACC Dept of Mathematics Dept Final Exam Review for Trig - Part 3 Trigonometry, 9th Edition; Lial, Hornsby, Schneider Fall 2008

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Smoothing, penalized least squares and splines

Electrical double layer: revisit based on boundary conditions

Solution to HW14 Fall-2002

Line Drawing and Clipping Week 1, Lecture 2

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm

Study of DDR Asymmetric Rt/Ft in Existing IBIS-AMI Flow

Chapter 15: Radiation Heat Transfer

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

element k Using FEM to Solve Truss Problems

Final Exam Spring 2014 SOLUTION

Math 9 Year End Review Package. (b) = (a) Side length = 15.5 cm ( area ) (b) Perimeter = 4xside = 62 m

Faculty of Engineering

Analysis The characteristic length of the junction and the Biot number are

Lecture 24: Flory-Huggins Theory

Transcription:

Mcrfacet mdels fr reflectn and refractn Steve Marschner Crnell Unversty CS 5625 Sprng 2016 (based n presentatn fr Walter, Marschner, L, and Trrance EGSR 07)

Mcrfacet scatterng mdels Rugh delectrc surface smth at wavelength scale rugh at mcrscale flat at macrscale mcrsurface macrsurface ar delectrc

Mcrfacet scatterng mdels Incdent rradance E llumnates macrsurface area da frm drectn. da

Mcrfacet scatterng mdels Incdent rradance E llumnates macrsurface area da frm drectn. d Scattered radance L r r L t measured n drectn n sld angle dω.

Mcrfacet scatterng mdels Incdent rradance E llumnates macrsurface area da frm drectn. d Scattered radance L r r L t measured n drectn n sld angle dω. f s (, ) = L r,t E Bdrectnal Scatterng Dstrbutn Functn

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, )

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Gves the ne mcrsurface nrmal m that wll scatter lght frm t. m = h(, )

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Gves the ne mcrsurface nrmal m that wll scatter lght frm t. d m d The sze f the set f relevant nrmals dω m relatve t the recevng sld angle dω s determned by h. d

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Measures densty f mcrsurface area wth respect t mcrsurface nrmal. m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Measures densty f mcrsurface area wth respect t mcrsurface nrmal. m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Measures densty f mcrsurface area wth respect t mcrsurface nrmal. d m m The rat f relevant mcrsurface area da m t macrsurface area da s D(m)dω m. da m da da m = D(m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Measures the fractn f pnts wth mcrsurface nrmal m that are vsble n drectns and. da m = D(m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Measures the fractn f pnts wth mcrsurface nrmal m that are vsble n drectns and. da m = D(m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Measures the fractn f pnts wth mcrsurface nrmal m that are vsble n drectns and. da m = D(m) G(,, m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Measures the fractn f pnts wth mcrsurface nrmal m that are vsble n drectns and. We nw knw the sze f the scatterng area, whch determnes hw much lght reflects. da m = D(m) G(,, m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Gves the fractn f the pwer ncdent n the scatterng area da m that s scattered. d m = m n (, ) da m de da m = D(m) G(,, m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Gves the fractn f the pwer ncdent n the scatterng area da m that s scattered. Ths scattered pwer s related t the ncdent rradance by the attenuatn and the scatterng area, prjected n the ncdent drectn. d m = m n (, ) da m de da m = D(m) G(,, m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) The BSDF s the rat f scattered radance t ncdent rradance: f s (, ) = dl de = d m /(da n d ) de d m = m n (, ) da m de da m = D(m) G(,, m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) The BSDF s the rat f scattered radance t ncdent rradance: f s (, ) = m n n (, ) D(m) G(,, m) d m d d m = m n (, ) da m de da m = D(m) G(,, m) d m da

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) f s (, ) = m n n (, ) D(m) G(,, m) d m d

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Fresnel reflectn f s (, ) = m n n (, ) D(m) G(,, m) d m d

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Fresnel reflectn surface rughness f s (, ) = m n n (, ) D(m) G(,, m) d m d

half-vectr functn h(, ) nrmal dstrbutn D(m) shadwng maskng G(,, m) attenuatn (, ) Fresnel reflectn surface rughness f s (, ) = m n n (, ) D(m) G(,, m) d m d determned by gemetry

Cnstructn f half-vectr reflectn refractn m + parallel t m

Cnstructn f half-vectr reflectn refractn h r = nrmalze( + ) m + parallel t m

Cnstructn f half-vectr reflectn refractn h r = nrmalze( + ) m m + parallel t m

Cnstructn f half-vectr reflectn refractn h r = nrmalze( + ) m m + parallel t m n + n parallel t m

Cnstructn f half-vectr reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) m m + parallel t m n + n parallel t m

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d h r d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d h r d m d d m = h r + 2 d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d d m h r d d d m = h r + 2 d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d d m h r d n d d m = h r + 2 d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d d m h r d n n 2 d d d m = h r + 2 d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d d m h r d n h t n 2 d d d m = h r + 2 d

Cnstructn f half-vectr sld angle reflectn refractn h r = nrmalze( + ) h t = nrmalze( + n) d d m h r d n d m h t n 2 d d d m = h r + 2 d d m = h t + n 2 n2 d

Result: scatterng functns reflectn f s (, ) = m n n (, ) D(m) G(,, m) d m d transmssn f s (, ) = m n n (, ) D(m) G(,, m) d m d

Result: scatterng functns reflectn f r (, ) = m n n F (, m) D(m) G(,, m) m + 2 transmssn f s (, ) = m n n (, ) D(m) G(,, m) d m d

Result: scatterng functns reflectn f r (, ) = m n n F (, m) D(m) G(,, m) m + 2 transmssn f t (, ) = m n n (1 F (, m)) D(m) G(,, m) n2 m + n 2

Result: scatterng functns reflectn f r (, ) = m m n n F (, m) D(m) G(,, m) + 2 transmssn f t (, ) = m n n (1 F (, m)) D(m) G(,, m) n2 m + n 2

Result: scatterng functns reflectn f r (, ) = m m n n F (, m) D(m) G(,, m) + 2 transmssn f t (, ) = m m n n n 2 (1 F (, m)) D(m) G(,, m) + n 2

Result: scatterng functns reflectn f r (, ) = 1 n n F (, m) D(m) G(,, m) 4 transmssn f t (, ) = m m n n n 2 (1 F (, m)) D(m) G(,, m) + n 2

Result: scatterng functns reflectn f r (, ) = F (, m) D(m) G(,, m) 4 n n transmssn f t (, ) = m m n n n 2 (1 F (, m)) D(m) G(,, m) + n 2

Fresnel reflectance Glassner, Prncples f Dgtal Image Synthess

Fresnel reflectance Glassner, Prncples f Dgtal Image Synthess

Nrmal dstrbutns Chce f dstrbutn s determned by surface Phng, Beckman are ppular chces GGX dstrbutn s anther ptn [Smth 67] gves a way t prduce smth Gs 8 Phng 40 20 20 40 D( m )

Nrmal dstrbutns Chce f dstrbutn s determned by surface Phng, Beckman are ppular chces GGX dstrbutn s anther ptn [Smth 67] gves a way t prduce smth Gs 8 Phng Beckman 40 20 20 40 D( m )

Nrmal dstrbutns Chce f dstrbutn s determned by surface Phng, Beckman are ppular chces GGX dstrbutn s anther ptn [Smth 67] gves a way t prduce smth Gs 8 Phng Beckman GGX (new) 40 20 20 40 D( m )

Nrmal dstrbutns Chce f dstrbutn s determned by surface Phng, Beckman are ppular chces GGX dstrbutn s anther ptn [Smth 67] gves a way t prduce smth Gs 8 Phng Beckman GGX (new) 1 40 20 20 40 90 90 D( m ) G 1 (, )