LASER ABLATION COUPLED TO MASS QUADRUPOLE SPECTROMETRY (LAMQS) APPLIED TO ANCIENT COINS

Similar documents
Laser-induced ablation: physics and diagnostics of ion emission

ION ACCELERATION ENHANCEMENT IN LASER-GENERATED PLASMAS BY METALLIC DOPED HYDROGENATED POLYMERS

Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration

Comparison of nanosecond laser ablation at 1064 and 308 nm wavelength

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Secondary ion mass spectrometry (SIMS)

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application

Overview of X-Ray Fluorescence Analysis

Out of vacuum characterisation of surfaces: a possible approach?

FIB - SIMS. Focussed Ion Beam Secondary Ion Mass Spectrometry.

ToF-SIMS or XPS? Xinqi Chen Keck-II

Figure 1: Two pressure shocks causing the sample temperature increase (Termocouple Tc1, figure 1b of reference [2]). 2 Heat production Apart from the

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER

Secondary Ion Mass Spectrometry (SIMS)

Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source

Applications for PIXE and other Ion Beam Analysis (IBA)

EUV lithography and Source Technology

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Optimization of laser-produced plasma light sources for EUV lithography

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

Secondary ion mass spectrometry (SIMS)

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Proton acceleration in thin foils with micro-structured surface

Laser and pinching discharge plasmas spectral characteristics in water window region

X-ray Absorption Spectroscopy

Appendix A Detector Calibration

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive

Development of a table top TW laser accelerator for medical imaging isotope production

Hydrogen Bonded Dimer Stacking Induced Emission of Amino-Benzoic Acid Compounds

MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES

Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Geant4 simulations of the lead fluoride calorimeter

Lecture 22 Ion Beam Techniques

Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt. A.V. Simakin and G.A.

Antonella Lorusso-Curriculum Vitae et Studiorum

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

ρ. Photoemission is presumed to occur if the photon energy is enough to raise qf πε, where q is the electron charge, F the electric field, and ε 0 φ ω

ICP-Mass Spectrometer

Applied Surface Science

Supporting information

Outline. LIBS Background. LIBS Developments. LIBS Overview. Atomic Emission Spectroscopy

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

Raman investigation of laser-induced structural defects of graphite oxide films

Observations Regarding Automated SEM and SIMS Analysis of Minerals. Kristofor Ingeneri. April 22, 2009

COST MP0601 Short Wavelength Laboratory Sources

Laser Dissociation of Protonated PAHs

MSE 321 Structural Characterization

Important processes in modeling and optimization of EUV lithography sources

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Secondary Ion Mass Spectroscopy (SIMS)

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source

AND LIMITATIONS K. BALOGH

Application of Surface Analysis for Root Cause Failure Analysis

Evaluation at the intermediate focus for EUV Light Source

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

Opto-acoustic measurements for plasma diagnostics

X-Ray Fluorescence and Natural History

Neutron activation analysis. Contents. Introduction

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

LABORATORY CRATERS TO METEORITE COMPLEX-CRATERS, CAN WE?

Methods of surface analysis

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

XUV 773: X-Ray Fluorescence Analysis of Gemstones

Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation

Photoemission Spectroscopy

Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas

Available online at ScienceDirect. Energy Procedia 71 (2015 ) Yokohama, Kanagawa, Japan

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

Debris characterization and mitigation from microscopic laser-plasma tin-doped droplet EUV sources

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Ion-beam techniques. Ion beam. Electrostatic Accelerators. Van de Graaff accelerator Pelletron Tandem Van de Graaff

Sample Analysis Design Polyatomic Interferences

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

GEM: A new concept for electron amplification in gas detectors

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

dating of geological samples by laser ablation ICPMS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

SUPPLEMENTARY INFORMATION

The scanning microbeam PIXE analysis facility at NIRS

Transcription:

LASER ABLATION COUPLED TO MASS QUADRUPOLE SPECTROMETRY (LAMQS) APPLIED TO ANCIENT COINS L. Torrisi 1, G.Mondio, A.M. Mezzasalma, F. Caridi 3, L. Giuffrida 1, T. Serafino, M. troneo 1, A. Baglione 1 and A. Torrisi 1 1 Dipartimento di Fisica, Università di Messina, Dipartimento di Fisica della Materia e Ingegneria Elettronica 3 Facoltà di Scienze MM. FF. NN., Università di Messina, V.le F. S. D alcontres 31, 98166 S. Agata, Messina Abstract A Nd:Yag laser operating in second harmonic (53 nm), 3 ns pulse duration, 1-15 mj pulse energy and 1-1 Hz repetition rate is employed to irradiate different coins placed in high vacuum chamber. The ablated material, in vapor phase, is analyzed by a mass quadrupole spectrometer in the range 1-3 amu with sensitivity up to 1 ppm. The on line analysis permits to investigate on the elements, chemical compounds and isotopic ratios characterizing the coin composition. Focused and unfocused laser beams can be employed to irradiate sub-millimetric or tens millimetric areas, respectively. The first method is employed to determine the elemental depth profiles from surface up to about.1 mm. The second method is employed to analyze the average composition of the superficial patina layers. This microinvasive technique, associated to the characteristic X-ray fluorescence emission due to kev electron impact, was employed to analyze different coins, based on bronze and silver, from VI up to XX sec. INTRODUCTION The Laser Ablation coupled to Mass Quadrupole Spectrometry (LAMQS) is becoming an interesting analysis technique useful to investigate on the surface composition of different materials comprised ancient metallic coins [1]. The laser-target interactions give rise to a localized surface vaporization with formation of a crater which dimensions depends on the laser spot, laser energy and number of laser shots []. The high energy stability, repetitive beam profile and flexibility permit a controlled material removal from solid surface, layer by layer, till the wished depth. The choice of the best laser irradiation parameters and the relative rapidity of analysis are the main advantages of the method, which make this technique attractive for elemental depth profile analysis, surface cleaning and non-disruptive surface processes. The ablation yield, given in terms of removed depth per laser pulse, can be measured in a controllable manner by using suitable calibration samples irradiated at different laser intensities [3]. The surface analysis is limited by the laser spot, controllable from the optical focusing lens. The penetration depth of the single laser shot depends on the laser and target properties. Thermal effects, mainly induced by infrared and visible lasers, enlarge the penetration depth in conductive targets, due to their high thermal conductivity. Photochemical effects, mainly due to ultraviolet lasers, limit the ablation depth only to the penetration absorption light and can be employed for analysis in insulator samples [4]. The atomic and molecular emissions from the laser irradiated target can be analyzed by using a mass spectrometer, which permits to measure the masses with high sensitivity and high mass resolution, permitting to detect ppm level element and compound concentrations and to distinguish isotopic masses. By increasing the irradiation time it is possible to remove atoms from depth layers and, by knowing the ablation rate, the mass spectrometry analysis may give the depth profile of the detected masses in the investigated surface. By using micrometric laser spots it is possible to investigate on the sample depth in a micro-invasive mode. In this work LAMQS and characteristic X-ray fluorescence (XRF) are applied to some coins in order to determine their elemental composition, chemical compounds and isotopic ratios, both in surface and in depth, in order to give interesting information to numismatic field. MATERIALS AND METHODS The laser ablation was performed with a pulsed Nd:Yag working at 53 nm, 3 ns pulse duration, 1-1 Hz repetition rate and 1-15 mj pulse energy. The laser beam was directed on the target placed in high vacuum (1-6 mbar) through a thin glass window. The spot diameter is 1 mm and the incidence angle is 45. The target can be moved vertically with the vacuum feedthrough, so that each laser shot can hit a fresh flat surface. Fig. 1 shows a photo of the experimental setup. In order to avoid any damage of the target surface, the laser was employed generally at a low intensity, of the order 59

LASER ABLATION COUPLED TO MASS QUADRUPOLE SPECTROMETRY (LAMQS) APPLIED Vacuum chamber EQP 3 466 B.C. and coined under the ruling of Anassila, and from Italy of 1937, coined under the Vittorio Emanuele III re d Italia, were also analyzed. The Greek and Italian coins are reported in the photo of Fig. c and Fig. d, respectively. Fig. 1: Photo of the experimental set up. Laser system of 8.3x1 8 W/cm corresponding to 5 mj pulse energy, and at 1 Hz repetition rate mode for times of the order of seconds or less. In such conditions only the most superficial atomic monolayers can be removed, without damage of the surface and the ablation rate on a and Ag calibration samples demonstrated that the removing depth is about 1 nm/s [6]. During depth analysis the laser energy generally is increased to 15 mj at which the removing depth increases to about 1 mm/s. Two different bronze coins of archaeological interest coined in the Mediterranean basin, coming from Antinopoulis (Egypt) and coined in the VI-VII century a.d. and Syracuse (Sicily, Italy), coined in the same historical period, were analyzed. The Egyptian and Syracuse coins are reported in the photo of Fig. a and Fig. b, respectively. Moreover, two different silver coins, consisting in a Greek tetradrachm from Messana (Messina-Italy) dated to 47 a) b) c) d) Fig. : Photo of the four investigated old coins: The Alexandria bronze coin of VII-VII sec. a.d. (a); the Syracuse bronze coin of VII-VIII sec a.d. (b); the Greek silver coin tetradrachm of IV sec B.C. (c) and the recent Italy silver coin of XX sec. (d). A Balzer-Pfeifer MQS spectrometer, 3 amu full scale, less than 1 amu mass resolution and less than 1 ppm sensitivity, was interfaced to the vacuum chamber in order to detect the masses emitted from the laser ablation process. The MQS mass selection occurs thank to a selective radiofrequency applied to four parallel rods, while the high sensitivity is obtained by the use of a secondary electron multiplier. The quadrupole operates by plotting the mass yield vs. the mass value or, by fixing the masses of interest, by plotting the masses vs. the irradiation time. Characteristic X-ray fluorescence (XRF) analysis, induced by kev electron beam, was performed with a high vacuum SEM microscope and a X-ray Si(Li) detector. XRF permitted to analyze the elemental composition of the investigated samples and to furnish the input masses parameters for the MQS spectrometer. XRF analysis is limited to the electron range depth in the metal which is about 6 nm for Ag and 8 nm for. LAMQS analysis depends on the ablation yield and on the number of the laser pulses employed to ablate the metal surface. A surface profiler, Tencor P-1, with high horizontal and vertical resolution, has been employed to measure the surface roughness on the surface of the two coins. It uses 1 mg tip force sweeping on the selected zones of the sample, especially in correspondence of the craters produced by the laser ablation on the coins. The crater profile permits to measure the ablation yield in terms of ablated depth/pulse and to correlate the MQS profile with the real sample depth. RESULTS The preliminary analyses performed through XRF permitted to evince the elemental composition of the patina layers of the different coins. As an example, Fig. 3 shows typical XRF spectra coming from the surface analysis of the Egypt bronze (a) and Greek silver (b) coins. The first indicates the typical bronze content in,, Fe and Al with trace elements of Si, Cl, K and Ca, probably present as oxides in the ancient patina. The second shows a high Ag characteristic peak indicating that the silver was employed as pure in the phase of coin. Also in this case the patina layer contains many trace elements, such as C,, Zn, Mg, Al, Si, S and Cl and oxygen probably present as oxide compounds. A confirm of these elements was given by MQS analysis. As an example Fig. 4 shows two typical MQS spectra obtained detecting the removed species from the Syracuse ablated coin. The first is relative to the mass range 6-1 amu (a) and the second to the mass range 1-3 amu (b). In both cases many chemical compounds are indicated as 6

Conteggi Yield (Counts) Ion current (x1-1 A) Fluorescence Yield Ion current (x1-9 A) L. Torrisi, G.Mondio, A.M. Mezzasalma, F. Caridi, L. Giuffrida, T. Serafino, F. Di Bartolo, A. Baglione and A. Torrisi content of the patina surface which appears rich in oxides, carbides and chlorides of the main bronze elements, Fe, Sn and. A particular attention was given to the measurements of the isotopic ratios of the lead in the bronze samples. Lead has four isotopes and their relative ratios are suitable of little variations, characteristic of the mineral used for the coin. 15 1 O Egyptian PAN bronze coin Cl Ca a) 1,4 1, 1,,8,6,4, Syracuse coin, 3 mj, 1 Hz, focus, det =9 a) H H FeO O, 6 65 7 75 8 85 9 95 1 CNFeCl (OH) S Cl 5 Al Si K Ca Fe 5 5 75 1 15 15 4 3 Syracuse, 3 mj, 1 Hz, focus, det =9 b) ClH SnO ClO CO 5 4 Ag L energy (ev) Greek silver coin Selinunte Argento SnSO 4 4 O 3 1 L Al K S K Ag L CK Zn L Cl K Ag L Si K K O K Mg K Zn K Ag L K 1 3 4 5 6 7 8 9 1 energia (ev) X-ray Energy (ev) Fig. 3: XRF spectra relative to the patina analysis of the Alexandria bronze coin (a) and of the Greek silver coin (b). Fig. 5 shows two typical MQS spectra relative to the characteristic lead isotopic masses measured in Alexandria (Egypt) (a) and Syracuse (b) bronze coins. The measured isotopic ratios are reported in Tab. I and compared with the expected ratio values coming from the global measurement on the terrestrial crust [5]. The little difference values of the isotopic ratios are very important because they are typical of the used minerals employed during the coin phase. Thus, from the point of view of archeology, numismatic and historic, the comparison between different coins and coins and mineral contents permit to deduct important information for the scientific and cultural communities. In order to have more information of the depth composition of the coin, depth profile investigations were conducted by using the laser ablation at 1 Hz repetition rate. The measurements, correlated with the ablation yield, permit to know the patina thickness, the presence of segregation effects and, in general, to have information of the b) 1 O C S Cl 1 1 14 16 18 4 6 8 3 Fig. 4: MQS spectra analysis of the Syracuse bronze coin in the mass range 6-1 amu (a) and 1-3 amu (b). depth profile of elements, chemical compounds and isotope ratios. As an example, Fig. 6 reports two MQS plots relative to the masses 16 (a) and 17 amu (b), representative of the O 16 and Ag 17, respectively, for the Italian silver coin (Fig. d). Both spectra, recorded irradiating with 15 mj pulse energy and 1 Hz repetition rate, show a yield decreasing with the irradiation time, due to the crater depth effect which reduces the laser focusing and the particle emission towards the MQS detector. It is the ratios between the two spectra yields, in terms of Ag 17 /O 16, that shows an interesting result in terms of elemental profile with the irradiation time, as reported in Fig. 6c. Finally, the data elaboration obtained by using a smoothing process cancels the background peaks due to the 1 Hz ablation repetition rate and it gives a clear profile with the irradiation time, as reported in Fig. 6d. This last plot contains also a depth scale which permits to correlate the element profile with the sample depth. This correlation between the irradiation time and the depth is obtained measuring the ablation yield in the coin, i.e. the crater depth per each laser shot. Two typical crater shapes obtained by using the surface depth profiler in the Alexandria bronze (Fig. a) and Italian silver coins (Fig. d) are reported in Fig. 7. By using 61

Ion current (x1-1 A) Ion current (x1-8 A) Ion current (x1-1 A) Ion current (x1-8 A) LASER ABLATION COUPLED TO MASS QUADRUPOLE SPECTROMETRY (LAMQS) APPLIED pulse laser energy of 15 mj, the first crater is due to 5 laser shots and the second crater to 5 laser shots, both have a diameter aperture of about 1 mm. In these conditions the measured ablation yield is of 3. m/pulse and 1 m/pulse, for the bronze and silver coin, respectively, which correspond to 3. m/s and 1 m/s of ablation rate, by using 1 Hz repetition rate, in the two cases, respectively. 3..5. 1.5 1. Alexandria, 3 mj, 1 Hz, focus, det =9 a) 8 / 6 =.75 7 / 6 = 1.5 7 6 5 4 3 1.5. Oxygen (16 amu) 5 1 15 5 3 17 Ag (a).5.15. 5 6 7 8 9.1.5 3. Syracuse coin, 3 mj, 1 Hz, focus, =9 b) det.5. 8 / 6 = 1.87 7 / 6 = 1.13. 5 1 15 5 3 (b) 1.5 1..5. 5 6 7 8 9 Fig. 5: Comparison of the MQS spectra relative to the isotope mass peak detected in the bronze Bronze Coin Period 8 / 6 7 / 6 Alexandria VI-VII.75 1.5 sec. a.d. Syracuse VII-VII sec. a.d. 1.87 1.13 Expected mean values 1.86-.7.64-1.13 Tab. I: Comparison of the measurements of the isotopic lead ratios in the two bronze coins with the expected values based on the mean isotopic abundances. Thus the Ag/O increment vs. depth indicates that the surface patina is rich of Ag oxides while the bulk is rich of pure Ag. The depth profile reported in Fig. 6d shows that the oxides layers of the patina have a thickness of the order of 1 mm, in good agreement with literature [6]. 17 Ag/O Yield Ratio 17 Ag/O Yield Ratio, smoothed.3..1. 5 1 15 5 3,3,,1 5 1 15 5 3 Depth ( m) 5 1 15 5 3 Time (s) Fig. 6: LAMQS irradiation profiles in the Italian silver coin relative to the Oxygen (a), Silver (b), Silver/Oxygen ratio (c), and data elaboration of the depth profile of Ag/O ratio (d) in the first superficial 3 micron depth. (c) (d) 6

Depth ( m) Depth ( m) L. Torrisi, G.Mondio, A.M. Mezzasalma, F. Caridi, L. Giuffrida, T. Serafino, F. Di Bartolo, A. Baglione and A. Torrisi 1-1 - -4-6 -8 Depth profile of the Alexandria bronze coin 15 mj, 1 Hz repetition rate, 5 shots Ablation yield Y = 3. m/pulse -1 4 6 8 Scansion length ( m) Depth profile of the Italian silver coin 5 mj, 1 Hz repetition rate, 5 shots a) b) relative simple and economical instrumentations. The analysis of bronze coin demonstrated that their composition is different, that the chemical compounds of the patina are different and that the lead isotope ratios can be employed as characteristic property of the employed lead for the coin. Similarly, the two silver coins have different patina composition with different chemical compounds and different patina thicknesses. However, in this work the potentiality of the analysis technique is mainly discussed and not the obtained characteristic of the coin composition. At the moment the composition results are less interesting because they are relative only to four samples coming from different country areas and to different historical periods. Only the application to many samples will permit to have a good statistical data analysis in order to deduct scientific interest conclusions because it will be possible to compare different coins from the same period, coin composition with mineral composition and to distinguish true coins from false ones. REFERENCES - -3-4 -5 Ablation yield Y = 1 m /pulse 5 1 15 Scansion length ( m) Fig. 7: Crater depth profiles relative to the silver coins coming from Alexandria (a) and Italy (b). DISCUSSION AND CONCLUSIONS LAMQS represents an useful technique to analyze the surface of metallic samples such as coins. Although the technique is micro-invasive, the crater diameter is of the order of 1 mm and the depth of the order of 3 mm, the analysis can be applied to many samples of interest in archeology and numismatic. A very important parameter of this analysis is represented by the control of the ablation yield in order to not damage the analyzed sample. To this low laser energy and number of laser shot should be employed. In this direction the preliminary use of XRF technique has been used to have preliminary information about the elements, possible chemical compounds and isotopes that can be searched by using MQS. Generally the analysis of one sample take a time of about 15 min but the data analysis and elaboration can take also 1 hour. However the investigation can be developed with [1] L. Torrisi, F. Caridi, L. Giuffrida, A. Torrisi, G. Mondio, T. Serafino, M. Caltabiano, E.D. Castrizio, E. Paniz, A. Salici, Nucl. Instr. and Methods B68,1657-1664, 1 [] D. Margarone, S. Gammino, J. Krása, E. Krouský, L. Láska, P. Parys, M. Pfeifer, M. Rosinski, K. Rohlena, J. Skála, L. Torrisi, J. Ullschmied, A. Velyhan, J. Wołowski, Czech J. of Physics, 56, B54-549, 6 [3] A. Ilacqua, A.M. Mezzasalma, L. Torrisi and J. Wolowski, Proc. PPLA3, Messina, Sept. 3, Gammino- Mezzasalma-Neri-Torrisi Eds., World Sci., Publ., Singapore, 177-183, 3 [4] L. Torrisi, A. Borrielli and D. Margarone, Nucl. Instr. And Meth. In Phys. Res. B 55, 373-379, 7 [5] K.J.R. Rosman and P.D.P. Taylor ISOTOPIC COM- POSITIONS OF THE ELEMENTS 1997, Dep.nt of Appl. Physics, rtin University of Technology, GPO Box U1987, Perth 61, Australia. Web site: http:// old.iupac.org/reports/1998/71rosman/iso.pdf [6] Società Italiana di Fisica Proceeding of the international school of Physics Enrico Fermi, Course CLIV, Physics methods in Archeometry, IOS Press, M. Missiroli Editor, 4[3] H. Lai, N. P. Singh, Bioelectromagnetics 16, 7-1 (1995) 63