Topic 4 Fourier Series. Today

Similar documents
Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

PHY226 Topic 4 Fourier series (Lectures 5-8) Online Problems

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Numerical Integration

lecture 16: Introduction to Least Squares Approximation

Simpson s 1/3 rd Rule of Integration

Fourier Series and Applications

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Mathematical Notation Math Calculus & Analytic Geometry I

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

is completely general whenever you have waves from two sources interfering. 2

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Interpolation. 1. What is interpolation?

Limit of a function:

Mathematical Notation Math Calculus & Analytic Geometry I

General properties of definite integrals

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Frequency-domain Characteristics of Discrete-time LTI Systems

BC Calculus Review Sheet

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

1.3 Continuous Functions and Riemann Sums

Pre-Calculus - Chapter 3 Sections Notes

Multiplicative Versions of Infinitesimal Calculus

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

Topic 9 - Taylor and MacLaurin Series

y udv uv y v du 7.1 INTEGRATION BY PARTS

Approximate Integration

ALGEBRA II CHAPTER 7 NOTES. Name

Numbers (Part I) -- Solutions

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

Chapter 25 Sturm-Liouville problem (II)

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

PROGRESSIONS AND SERIES

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

MTH 146 Class 16 Notes

DIGITAL SIGNAL PROCESSING LECTURE 5

[Q. Booklet Number]

Notes 17 Sturm-Liouville Theory

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Chapter 7 Infinite Series

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

LEVEL I. ,... if it is known that a 1

Schrödinger Equation Via Laplace-Beltrami Operator

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

The limit comparison test

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Section 2.2. Matrix Multiplication

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

Math 3B Midterm Review

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

EXPONENTS AND LOGARITHMS

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

f ( x) ( ) dx =

Similar idea to multiplication in N, C. Divide and conquer approach provides unexpected improvements. Naïve matrix multiplication

MATRIX ALGEBRA, Systems Linear Equations

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Vectors. Vectors in Plane ( 2

Discrete Mathematics I Tutorial 12

Review of the Riemann Integral

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Solutions to Problem Set 7

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

2017/2018 SEMESTER 1 COMMON TEST

CITY UNIVERSITY LONDON

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

( a n ) converges or diverges.

Project 3: Using Identities to Rewrite Expressions

Crushed Notes on MATH132: Calculus

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

We will begin by supplying the proof to (a).

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity.

Section 6.3: Geometric Sequences

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Formal Languages The Pumping Lemma for CFLs

The Basic Properties of the Integral

Surds, Indices, and Logarithms Radical

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

Mathematical Induction (selected questions)

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

The Reimann Integral is a formal limit definition of a definite integral

National Quali cations AHEXEMPLAR PAPER ONLY

Closed Newton-Cotes Integration

Transcription:

Topic 4 Fourier Series Toy

Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz)

st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will coti ieret rctios o ech hrmoic y B siω t y B siω t y 3 3 B3 siω t y 4 4 B4 siω t The summe output repets with the perio o the st hrmoic Summe hrmoics y totl B siωt B siωt... B siωt

Fourier clime tht y repetig ptter coul e represete y summe series o ie sie terms ω t) ωt siωt ω http://www.uivie.c.t/uture.mei/moe/gle rie/ourier/ourier.html http://www.lst.com/ourier/

Fourier clime tht y repetig ptter coul e represete y summe series o ie sie terms ω t) ωt siωt ω http://www.uivie.c.t/uture.mei/moe/gle rie/ourier/ourier.html http://www.lst.com/ourier/

si ) T t T t t si ) t t t ω ω T the T ω ω ω ω, The ptter will repet with perio o thest hrmoic requecy ω ω so sice Fourier si where T is the perio o the repetig uctio

si ) Or i the ptter repets with perio where is istce we c write Here perio is 4

F) ) si F) si F) For these cses is tke to e to simpliy epressios F) si F) 3 3 3 F) 3 si 3

Nee to i, ) si some ckgrou work require.

Bckgrou I - Itegrtig over si

Itegrtig over or ll si or ll

Itegrtig over or ll si or ll

Bckgrou II - useul itegrls A B A B) A B) si 4 m m { m) } { m) }

si or ll or ll m si si m or ll m si m or ll m Rememer: o eve o si or ll

Fiig coeiciets o the Fourier Series Rememer how the Fourier series c e writte like this or perio ) si For simplicity let s mke so we c write ) si

Fiig coeiciets o the Fourier Series ) ) si Tke this equtio itegrte oth sies over perio Clerly o the RHS the oly o-zero term is the term ) ) Repet perio si )

) Fiig coeiciets o the Fourier Series si This time multiply oth sies y ) itegrte over perio ) si

Fiig coeiciets o the Fourier Series ) si O RHS, oly the term survives s it is oly term where Orthogolity) ) Hece we i )

Fiig coeiciets o the Fourier Series To i ll coeiciets multiply oth sies o the Fourier series y m), the itegrte over perio: )m m m si m O the RHS, oly the m term survives the itegrtio m m m )m m ) m

Coeiciets o the Fourier Series I similr wy, multiplyig oth sies o the Fourier series y sim), the itegrtig over perio we get: m )si m

Coeiciets o the Fourier Series The Fourier series c e writte with perio s ) si The Fourier series coeiciets c e ou y:- ) ) )si

Coeiciets o the Fourier Series Coeiciets o the Fourier Series si ) ) ) ) si The Fourier series c e writte with perio s The Fourier series coeiciets c e ou y:-

Fiig the coeiciets o Fourier Series Step. Write ow the uctio ) i terms o. Wht is the perio? Step. Use equtio to i? ) 3 Step 3. Use equtio to i? ) Step 4. Use equtio to i? ) si

Emple 4. - pge 35 3. Use equtio to i?. The uctio )? Wht s the perio? ) < < < < ) [ ] 3. Use equtio to i? ) ) ) Perio is si

4. Use equtio to i? si ) si ) si )si ) )

Step 5. Write out vlues o or,, 3, 4, 5,. ) ) ) ) ) ) ) ) 3 3 4 ) ) ) ) 5 5 5 ) si

Step 5. Write out vlues o or,, 3, 4, 5,.... si 5 5 si 3 3 si ) si )

So wht oes the Fourier series look like i we oly use irst ew terms? 3

ecture 7 ecture 7 Fourier Series Fourier Series More emples o Fourier series Descriig pulses with Fourier series si ) ) ) )si

Emple 4. - pge 35 3. Use equtio to i?. The uctio )? Wht s the perio? ) < < < < ) [ ] 3. Use equtio to i? ) ) ) Perio is si

4. Use equtio to i? si ) si ) si )si ) )

Step 5. Write out vlues o or,, 3, 4, 5,. ) ) ) ) ) ) ) ) 3 3 4 ) ) ) ) 5 5 5 ) si

Step 5. Write out vlues o or,, 3, 4, 5,.... si 5 5 si 3 3 si ) si )

Fourier Series - QUIZ ). Wht is whe 3? ). Wht is whe 5? ) ) 3. Wht is whe? 4. Wht is whe 7? ) 5. Wht is whe 5? ) ) 6. Wht is whe? 7. Wht is whe 4? ) ) 3 5 ) ) ) ) ) 4 ) )

Fourier Series - QUIZ 8. Wht is? I 4 ) 5 4 3 - I 4 [ ] - -3-4 -5 - -8-6 -4-4 6 8

Fourier Series - QUIZ 9. Wht is I 5) ) 5 4 3 - I 5) [ ] 5 - -3-4 -5 - -8-6 -4-4 6 8

Fiig coeiciets o the Fourier Series Fi Fourier series to represet this repet ptter. Steps to clculte coeiciets o Fourier series. Write ow the uctio ) i terms o. Wht is perio? ) < < < Perio is

Fiig coeiciets o the Fourier Series Fiig coeiciets o the Fourier Series < < < ) Steps to clculte coeiciets o Fourier series. Use equtio to i? ) )

Fiig coeiciets o the Fourier Series ) < < < First 5 terms to 5). Use equtio to i? 3. Use equtio to i? ) )si et sie - i coeiciets Right sie - i coeiciets

< < < ) vu uv uv v v si Itegrte y prts ) ) u u

vu uv uv v v si si si Itegrte y prts si si u u

4 4 9 9 9 3 5 5 5 5 si ) ) ) 6 6 4 ) )

< < < ) vu uv uv v v si si Itegrte y prts )si u u si si )si

vu uv uv v v si si Itegrte y prts u u si si

si ) 3 3 4 5 5 4

3 9 4 5 5 3 3 4 5 5 4 ) 3 5 si si si3 si4 si5... 4 9 5 3 4 5

) 3 5 si si si 3 si 4 si 5... 4 9 5 3 4 5 Check our Fourier series usig Fourier_checker.ls

Fourier Series o eve o repetig uctios ) ) ) )

Oly sie terms require to eie o uctio Oly ie terms require to eie eve uctio Oly eve uctio c hve oset.

Fourier Series pplie to pulses Or spce ) ser light pulse or < or or > Iitil isplcemet o guitr strig Electroic wveuctio o molecule

ecomes ut oly look etwee This pproch is ie ut it les to lot o work i the itegrtio stge.

O uctio oly sie terms) Eve uctio oly ie terms) Wht is perio o the repetig ptter ow?

Hl-rge sie series where We sw erlier tht or uctio with perio the Fourier series is:- ) si where ) )si I the hl rge cse we hve uctio o perio which is o so cotis oly sie terms

Hl-rge sie series where I the hl rge cse we hve uctio o perio which is o so cotis oly sie terms si ) si ) )si ) )si where The series is vli oly etwee

Hl-rge sie series ) si )si ) ODD si ODD ODD ODD EVEN EVEN EVEN )si

Hl-rge ie series For uctio with perio the Fourier series is:- ) si where ) )si We hve uctio o perio ut this time it is eve so cotis oly ie terms

Hl-rge ie series We hve uctio o perio ut this time it is eve so cotis oly ie terms ) ) ) ) ) ) EVEN EVEN EVEN EVEN )

The Fourier series or pulse such s c e writte s either hl rge sie or ie series. However the series is oly vli etwee Hl rge sie series ) si where )si Hl rge ie series ) where )

Fi Hl Rge Sie Series which represets the isplcemet ), etwee 6, o the pulse show to the right ) or < 6 The pulse is eie s with legth 6 So )si 6 6 6 si Itegrte y prts uv uv vu

)si 6 6 6 si Itegrte y prts uv uv vu So so set u si v 6 6 v si u 6 6 6 6 6 6 6 6 36 si 3 6 6 3 6 6 6

6 6 si 6 )si 6 6 6 6 6 si 36 6 6 3 6 6 6 6 3 si si 36 36 3 5 5 4 4 3 3 6 4 3 3 3 4 4 5 5

Fi Hl Rge Sie Series which represets the isplcemet ), etwee 6, o the pulse show to the right Hl rge sie series ) si where )si 6 4 3 5 ) si si si si si... 6 3 3 5 6

... 6 5 si 5 3 si 3 si 4 3 si 6 6 si ) Check our Fourier series usig Fourier_checker.ls

Fourier Series pplie to pulses Why is this useul? I Qutum you hve see tht there re speciic solutios to the wve equtio withi potetil well suject to the give oury coitios. Ψ ) Ψ ) B si

ecture 7 Summry Prctice questios olie t http://www.hep.she.c.uk/phy6/uit/phy6tto4.htm Norml series Eve o uctios Pulses

ecture 8 Summry Prctice questios olie t http://www.hep.she.c.uk/phy6/uit/phy6tto4.htm Comple Fourier series Prsevl s theorum Revisio & Prctice

ecture 8 ecture 8 Fourier Fourier si ) ) )si )

Comple Fourier Series I my res o physics, especilly Qutum mechics, it is more coveiet to ier wves writte i their comple orm e i The comple orm o the Fourier series c e erive y ssumig i solutio o the orm ) c e the multiplyig oth sies y itegrtig over perio e i ) si si i e i e i im e )

Comple Fourier Series The comple orm o the Fourier series c e erive y ssumig im i im ) e c i solutio o the orm ) c e the multiplyig oth sies y itegrtig over perio: im e e e c e i m)

Comple Fourier Series Comple Fourier Series m i im i im e c e e c e ) ) For itegrl vishes. For m itegrl. So e c i ) m m i m e m i ) ) si )

For perio o the comple Fourier series is i c e i where c ) e ) The more geerl epressio with perio is i where i ) c e c ) e

Emple 4.5 Fi the comple Fourier series or ) i the rge - < < i the repet perio is 4. c i i ) e perio is 4, so we write c e 4 Itegrtio y prts u v uv v u u u v e i v e i i

e c i ) perio is 4, so we write e c i 4 u v uv u v 4 e i e i i i 4 4 i i e i e i i i e e i e v u i i e i v u ) ) i i i i i i i i e e e e i e e i e e i

i i i i i i i Sice the C ) ) i i e e e e C i i e e ) We wt to i ctul vlues or C so it woul e helpul to covert epressio or C ito sie ie terms usig the str epressios:- si i i i e e ) i i i i i si so C ) sice ) c e i so i i ) ) e

Prsevl s Theorem pplie to Fourier Series The eergy i virtig strig or electricl sigl is proportiol to the squre o the mplitue o the wve

Prsevl s Theorem pplie to Fourier Series Cosier gi the str Fourier series with perio tke or simplicity s. ) si Squre oth sies the itegrte over perio: [ ) ] si

[ ) ] si The RHS will give oth squre terms cross term. Whe we itegrte, ll the cross terms will vish. All the squres o the ies sies itegrte to give hl the perio). [ ) ] [ ] Prsevl s theorem sys the totl eergy i virtig system is equl to the sum o the eergies i the iiviul moes.

Prctice revisio Try olie questios & 7