Intense Slow Positron Source

Similar documents
Intense Slow Positron Source

Intense Source of Slow Positrons

Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten

In-Flight Fragment Separator and ISOL Cyclotron for RISP

PREX Background Simulation Update

? Physics with many Positrons

PREX Simulation Update

GBAR Project Gravitational Behavior of Antihydrogen at Rest

positron source EPOS - general concept - timing system - digital lifetime measurement

Reactor & Spallation Neutron Sources

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

EPOS an intense positron beam project at the Research Center Rossendorf

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

CW POSITRON SOURCE AT CEBAF

Higgs Factory Magnet Protection and Machine-Detector Interface

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

Radiation damage calculation in PHITS

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments

A Polarized Positron Source for CEBAF

Chapiter VII: Ionization chamber

The High-Power-Target System of a Muon Collider or Neutrino Factory

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

RCNP cyclotron facility

Neutral beam plasma heating

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

Radiological Issues at JLab

17 Neutron Life Cycle

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Research Center Dresden Rossendorf

Photonuclear Reactions and Nuclear Transmutation. T. Tajima 1 and H. Ejiri 2

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

2. Passage of Radiation Through Matter

Chopping High-Intensity Ion Beams at FRANZ

Sample Examination Questions

LITHIUM LENS FOR EFFECTIVE CAPTURE OF POSITRONS

Microtron for Smog Particles Photo Ionization

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

Since the beam from the JNC linac is a very high current, low energy beam, energy loss induced in the material irradiated by the beam becomes very lar

Detekce a spektrometrie neutronů. neutron detection and spectroscopy

Electromagnetic Dipole Strength distribution in 124,128,134 Xe below the neutron separation energy

Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS

pp physics, RWTH, WS 2003/04, T.Hebbeker

Review of ISOL-type Radioactive Beam Facilities

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

10 GeV Synchrotron Longitudinal Dynamics

Interaction of charged particles and photons with matter

Ion Implanter Cyclotron Apparatus System

Transition Radiation Detector for GlueX

The intense positron source EPOS at Research Center Rossendorf

Polarimetry in Hall A

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack

Theory English (Official)

Investigation of the Effect of Space Charge in the compact-energy Recovery Linac

Positron Source using Channelling for the Baseline of the CLIC study

PHYSICS B (ADVANCING PHYSICS) 2864/01 Field and Particle Pictures

Positron and positronium for the GBAR experiment

A Pure Photon Source for use with Solid Polarized Targets Progress Report UVa Option

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems

SPIRAL-2 FOR NEUTRON PRODUCTION

SC QUADRUPOLE AND DIPOLE

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

II) Experimental Design

Beam losses versus BLM locations at the LHC

Compact Wideband THz Source

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

Progress Report on Chamber Dynamics and Clearing

1.E Neutron Energy (MeV)

Measurements of liquid xenon s response to low-energy particle interactions

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

DETECTORS. I. Charged Particle Detectors

EEE4106Z Radiation Interactions & Detection

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

New irradiation zones at the CERN-PS

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC )

Chapter 2 Problem Solutions

High Energy Photons at HI S

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams

2. THE HIGS FACILITY 2.1 The Free-Electron Laser Source

PARTICLE ACCELERATORS

Chapter 7.1. Q4 (a) In 1 s the energy is 500 MJ or (i) 5.0! 10 J, (ii) 5.0! 10 kw! hr " 140 kwh or (iii) MWh. (b) In one year the energy is

The SARAF 40 MeV Proton/Deuteron Accelerator

FACET-II Design Update

Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

Simulation of the Beam Dump for a High Intensity Electron gun

6 Bunch Compressor and Transfer to Main Linac

Studies of Charge Separation Characteristics for Higher Density Plasma. in a Direct Energy Converter Using Slanted Cusp Magnetic Field

Chap. 19 Miscellaneous Detectors

TEST MEASUREMENTS WITH THE REX-ISOLDE LINAC STRUCTURES*

Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas

1.4 The Tools of the Trade!

Transcription:

Intense Slow Positron Source Nucl. Inst. Meth. A 532 (2004) 523-532. ~ 14 m 10 MeV Linac 10 MeV rhodotron beam dump target - collector target - collector moderator - buffer gas - trap e+ 18/03/2005 P. Pérez & A. Rosowsky 1

Intense Slow Positron Source Introduction Geometry, heat inside target, e + production rate Collection e - spread, e - dump e - beam, e + e - separation, rotating coils 18/03/2005 P. Pérez & A. Rosowsky 2

e + Production and Collection Beam energy/intensity : 10 MeV 2~10 ma Target geometry : thin foil at grazing incidence ( 3 degrees) Probability of first interaction (e + & Xrays) Thermal effects : Xrays + e - leak Large angle collection and selection < 1 MeV 18/03/2005 P. Pérez & A. Rosowsky 3

Thin Target at Grazing Angle Study energy deposit as a function of incidence angle Y e beam section 1 mm x 20 mm LINAC 10 MeV e 3 degree Thickness = D equivalent thickness: D = D / sin 3 0 e+ 3 0 D Z e+ e+ e+ X D Tungsten target 20 mm x 20 mm x 50 µm 18/03/2005 P. Pérez & A. Rosowsky 4

Track Length inside Target 10 4 e - track length inside targets of 1mm equivalent thickness 10 3 3 0 10 2 90 0 <L> rms ( cm) ( cm) 3 0 0.11 0.11 90 0 0.53 0.48 10 1-0.5 0 0.5 1 1.5 2 2.5 3 track length (cm) 18/03/2005 P. Pérez & A. Rosowsky 5

Kinetic energy at target exit positrons electrons Energy (GeV) 2004 Energy (GeV) 18/03/2005 P. Pérez & A. Rosowsky 6

Target e - soldering test on Tungsten 50 μm 40 kv / 20 ma on 20 mm 2 not perforated at 15 ma Melting limit: 4 kw / cm 2 Working hypothesis: 2 kw / cm 2 Study hypothesis: 1 kw / cm 2 Test with high intensity beam from IBA foreseen T rise, evaporation 18/03/2005 P. Pérez & A. Rosowsky 7

Electron welding tests Illuminated area = 0.2 cm 2 60 40 KV 2250 30 50 μm 1000 50 2000 25 800 1750 MAX (ma) I 40 30 20 1500 1250 1000 750 Power (W) I MAX (ma) 20 15 10 600 400 Power (W) 10 500 250 5 I MAX Power 200 0 10-2 10-1 1 Thickness (mm) 0 0 20 25 30 35 40 45 50 55 60 0 Voltage (KV) 18/03/2005 P. Pérez & A. Rosowsky 8

Input e - energy comparisons Rule of the game: Target sustains 1 KW continuous deposited power per cm 2 Goal: optimize rate of e + with E e+ < 1 MeV Input variables: E = e - energy, I = e - current, θ = e - incidence angle on target, D = target equivalent thickness Generate e - Power deposited in target & e + Production rate = f (E, I, D, θ) Limit current I Optimal production rate Here try 2 values for E (10 and 100 MeV) and θ (3 and 90 degrees) 18/03/2005 P. Pérez & A. Rosowsky 9

Energy Deposit in 1cm 2 Target Simulation with GEANT Power (W) 10000 9000 8000 7000 6000 E(e - ) = 10 MeV E=10MeV puissance deposee pour 1mA de e Deposited power for 1 ma - 90 0 50000 45000 40000 35000 30000 E(e - ) = 100 MeV E=100MeV puissance deposee pour 1mA de e Deposited power for 1 ma - 90 0 5000 4000 4.5 kw/ma 25000 20000 3000 2000 1000 0 1.7 kw/ma 3 0 0 1000 2000 3000 4000 5000 0 0 2000 4000 6000 8000 10000 D (μm) D (μm) 18/03/2005 P. Pérez & A. Rosowsky 10 15000 10000 5000 4 kw/ma 3 0

Maximum input current Simulation with GEANT Current (ma) 10 2 10 E(e - ) = 10 MeV E=10MeV courant d e - pour 1kW puissance deposee I MAX for 1 kw deposited Current (ma) 10 1 E(e - ) = 100 MeV E=100MeV courant d e - pour 1kW puissance deposee I MAX for 1 kw deposited 0.3 ma 1 0.59 ma 3 0 10-1 3 0 10-1 0.22 ma 90 0 90 0 0 1000 2000 3000 4000 5000 D (μm) 10-2 0 2000 4000 6000 8000 10000 D (μm) 18/03/2005 P. Pérez & A. Rosowsky 11

Production Rate (forward) 10 7 electrons on 1 cm 2 target Ne + 25000 22500 20000 17500 E(e - ) = 10 MeV e + forward E=10MeV nombre de e + a l avant pour 10 7 e - sur la cible 3 0 Ne + X x 10 3 3 4000 3500 3000 E(e - ) = 100 MeV e + forward E=100MeV nombre de e + a l avant pour 10 7 e - sur la cible 3 0 15000 2500 12500 90 0 90 0 2000 10000 ~ 15000 / 10 7 = 1.5 10-3 1500 7500 5000 2500 1000 500 ~ 9 10 5 / 10 7 = 0.09 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 D (μm) D (μm) 18/03/2005 P. Pérez & A. Rosowsky 12

Production Rate (E e+ <1 MeV) 10 7 electrons on 1 cm 2 target Ne + 8000 7000 6000 E(e - ) = 10 MeV Ee + <1 MeV E=10MeV nombre de e + de moins de 1 MeV a l avant pour 10 7 e - sur la cible 3 0 Ne + X 10 2 x 10 2 1400 1200 E(e - ) = 100 MeV E=100MeV nombre de e + de moins de 1 MeV a l avant pour 10 7 e - sur la cible Ee + <1 MeV 3 0 5000 1000 4000 3000 2000 90 0 ~ 3500 / 10 7 = 3.5 10-4 800 600 400 ~ 4 10 4 / 10 7 = 4 10-3 90 0 1000 200 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 D (μm) D (μm) 18/03/2005 P. Pérez & A. Rosowsky 13

Optimal Production Rates (forward) Power deposited in 1 cm 2 target = 1 kw Ne + (s -1 ) X 10 9 x 10 9 8000 7000 6000 5000 E(e - ) = 10 MeV E=10MeV taux de e + a l avant pour 1kW depose dans la cible e + forward 5.5 10 12 3 0 Ne + (s -1 ) X x 10 11 11 2000 1800 1600 1400 1200 E(e - ) = 100 MeV E=100MeV taux de e + a l avant pour 1kW depose dans la cible e + forward 1.5 10 14 3 0 4000 1000 3000 800 2000 1000 600 90 0 400 90 0 200 0.7 10 14 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 D (μ m) D (μ m) 18/03/2005 P. Pérez & A. Rosowsky 14

Optimal Production Rates (E e+ <1 MeV) Power deposited in 1 cm 2 target = 1 kw Ne + (s -1 ) X 10 9 x 10 9 2000 1800 1600 1400 1200 1000 E(e - ) = 10 MeV E=10MeV taux de e + de moins de 1 MeV a l avant pour 1kW depose dans la cible Ee + <1 MeV 1.4 10 12 3 0 Ne + (s -1 ) X 10 9 x 10 9 10000 9000 8000 7000 6000 5000 E(e - ) = 100 MeV E=100MeV taux de e + de moins de 1 MeV a l avant pour 1kW depose dans la cible 7 10 12 Ee + <1 MeV 3 0 800 4000 600 400 0.6 10 12 3000 2000 1.5 10 12 200 90 0 90 0 1000 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 D (μ m) D (μ m) 18/03/2005 P. Pérez & A. Rosowsky 15 100μm at 3 0 /10MeV 2mm at 90 0 /100MeV

Production For 1 cm 2 of target Normalization to same number of e - generated D = 1mm Limit 1 kw / cm 2 900 800 90 0 in units of 10 12 s -1 Imax Ne + Ne + (<1MeV) 700 600 500 3 0 0.58 ma 4.6 1.1 90 0 0.25 ma 2.5 0.55 400 300 200 3 0 100 0 0 1 2 3 4 5 6 E c (MeV) 1 2 3 4 5 0.58 ma 2.3 ma for 4 cm 2 0 6 Ee+ (MeV) 18/03/2005 P. Pérez & A. Rosowsky 16

Energy versus angle Production point inside target At target exit angle Kinetic energy (GeV) 2004 Kinetic energy (GeV) 18/03/2005 P. Pérez & A. Rosowsky 17

Magnetic Bulb B target e + e + e - B B dump x target e + 18/03/2005 P. Pérez & A. Rosowsky 18

Collection Setup WALL SHIELD MAGNET H1 QUADRUPOLE TARGET DUMP MAGNET H2 HELMOLTZ GUIDING TUBE 20 cm 50 cm 40 cm 1 m count e + here 18/03/2005 P. Pérez & A. Rosowsky 19

Setup 2003 18/03/2005 P. Pérez & A. Rosowsky 20

3D view 18/03/2005 P. Pérez & A. Rosowsky 21

Setup 2004 18/03/2005 P. Pérez & A. Rosowsky 22

3D setup 2004 18/03/2005 P. Pérez & A. Rosowsky 23

Positrons y z x 18/03/2005 P. Pérez & A. Rosowsky 24

Positrons in plane H2 2004 18/03/2005 P. Pérez & A. Rosowsky 25

energy versus radius at x = 200 cm positrons Radius (cm) electrons Energy (GeV) 2004 Energy (GeV) 18/03/2005 P. Pérez & A. Rosowsky 26

Positrons radius at x = 200 cm Kinetic energy < 1 MeV All kinetic energies Radius (cm) 2004 Radius (cm) 18/03/2005 P. Pérez & A. Rosowsky 27

Transversal cuts: positrons 18/03/2005 P. Pérez & A. Rosowsky 28

e+ position in (y, z) planes Before 4-poles X = 3 cm 2004 X = 200 cm 18/03/2005 P. Pérez & A. Rosowsky 29

Collection efficiency Fraction of e + at exit plane inside circle of radius 5 or 2 cm centered on axis 1 r = 5 cm 1 r = 2 cm 0.9 E < 600 KeV 0.9 0.8 with quad 0.8 5 0.7 0.6 2 0.7 0.6 slit shaped beam 0.5 0.4 E < 1 MeV no quad 0.5 0.4 1 x 4 cm 0.3 0.2 0.3 0.2 2 x 2 cm 0.1 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 transverse radius of e + source at target level (cm) 18/03/2005 P. Pérez & A. Rosowsky 30

Version 2004 I = 2.5 ma X = 200 cm X = 320 cm e + e R yield 5 e + coll = 5 cm + rate 5 yield xe12 all 24% 5.0E-4 7.8 E <1 MeV 33% 2.4E-4 3.7 E < 600 KeV 25% 1.0E-4 1.6 I = 2.5 ma R coll = 10 cm all E <1 MeV E < 600 KeV 10 31% 36% 25% X = 200 cm e + yield 6.3E-4 2.6E-4 1.0E-4 e + rate xe12 9.8 4.1 1.6 23% 4.87E-4 7.6 32% 23% 2.37E-4 0.95E-4 5.99E-4 2.53E-4 1.02E-4 e + rate xe12 18/03/2005 P. Pérez & A. Rosowsky 31 3.7 1.5 X = 320 cm e + e yield + rate 10 xe12 29% 35% 25% 9.3 3.9 1.6

Electrons (2003) x z 10 cm 18/03/2005 P. Pérez & A. Rosowsky 32

Scattered electrons 2004 18/03/2005 P. Pérez & A. Rosowsky 33

Scattered electrons 2004 Energy deposited into SC10 from 0 to 200 cm 18/03/2005 P. Pérez & A. Rosowsky 34

Scattered electrons inside 18/03/2005 P. Pérez & A. Rosowsky 35

Scattered electrons 2004 18/03/2005 P. Pérez & A. Rosowsky 36

Scattered electrons 2004 18/03/2005 P. Pérez & A. Rosowsky 37

Scattered electrons 2004 18/03/2005 P. Pérez & A. Rosowsky 38

Energy deposited energy in % of total deposited beam energy de/dx magnet H1 HLM1 = 0.000122330341 de/dx magnet H2 HLM2 = 0.0286305789 de/dx magnet H4 HLM4 = 0.0682362914 de/dx dump SCR2 = 0.000255941792 de/dx magnet H3 HLM3 I = 1 0.0091400696 de/dx magnet H3 HLM3 I = 2 0.00750565063 de/dx magnet H3 HLM3 I = 3 0.00405035447 de/dx magnet H3 HLM3 I = 4 0.00288876216 de/dx magnet H3 HLM3 I = 5 0.00254936377 de/dx magnet H3 HLM3 I = 6 0.00162501738 de/dx magnet H3 HLM3 I = 7 0.00172283954 de/dx magnet H3 HLM3 I = 8 0.00202953094 de/dx magnet H3 HLM3 I = 9 0.000685093924 de/dx magnet H3 HLM3 I = 10 0.000578379841 de/dx magnet H3 HLM3 I = 11 0.00041745021 de/dx magnet H3 HLM3 I = 12 0.000419273681 de/dx rod H3 ROD3 I = 1 0.010669956 de/dx rod H3 ROD3 I = 4 0.00951220281 de/dx rod H3 ROD3 I = 9 0.00702352962 de/dx rod H3 ROD3 I = 12 0.00500533357 de/dx SCR4 = 0. de/dx SCR5 = 0. de/dx SCR6 = 0. de/dx SCR7 = 0.00640179683 de/dx SCR8 = 2.370119E-05 de/dx SCR9 = 7.97315661E-05 de/dx SC10 = 0.356774747 de/dx SC11 = 0.147463262 de/dx SC12 = 5.45780676E-05 de/dx SC4P = 0.00213429541 de/dx ROD2 = 0.0340836123 de/dx RDUP = 0.00375873246 de/dx LIK3 = 0.0216296595 de/dx RAIL = 0.0265459437 de/dx deflector H2 = 0.00584139721 de/dx deflector H3 = 0.00109494338 de/dx deflector DFDU = 0.000519398251 de/dx deflector SC11 = 0.00316047249 de/dx deposited in moderator = 0.000436547067 total de/dx inside target-selector cylinder = 0.996470451 2004 18/03/2005 P. Pérez & A. Rosowsky 39

Electron and photon fluxes Two possible setups with same e + output Beam and coils on same axis e - Target and downstream coils on same axis e - 18/03/2005 P. Pérez & A. Rosowsky 40

Fluxes of electrons and photons I = 2.3 ma R = 1 cm R = 2 cm R = 3 cm R = 4 cm Setup 1 5 W 140 W 450 W 1.5 kw Setup 2 10 W 45 W 80 W 110 W at exit plane Power (kw) 10 9 8 7 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Power (kw) 10 9 8 7 0.25 0.225 0.2 0.175 0.15 0.125 0.1 0.075 6 0.2 0.1 6 0.05 0.025 5 0 200 210 220 230 240 250 260 270 280 5 0 200 210 220 230 240 250 260 270 280 plots for 1 ma 4 3 2 1 Setup 1 4 Setup 2 3 2 1 0 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 X (along coils axis) (cm) X (along coils axis) (cm) 18/03/2005 P. Pérez & A. Rosowsky 41

No target No dump ( setup 2) Exit tube 18/03/2005 P. Pérez & A. Rosowsky 42

No target (2004) 18/03/2005 P. Pérez & A. Rosowsky 43

Selector field map 18/03/2005 P. Pérez & A. Rosowsky 44

electrons positrons 18/03/2005 P. Pérez & A. Rosowsky 45

Selector: electrons electrons 18/03/2005 P. Pérez & A. Rosowsky 46

Selector: positrons 0.5~0.2 positrons selected 18/03/2005 P. Pérez & A. Rosowsky 47

Separation e+ e- Target Collector e- from pairs e+ below 1 MeV Selector e- not from pairs e+ above 1 MeV e+ below 1 MeV 2 steps e+ isolation priority to e+ << 1 MeV!!! 18/03/2005 P. Pérez & A. Rosowsky 48

A very first design of a 2D expander/uniformizer F. Meot and T. Daniel, NIM, A 379 (1996) 196-205. β (m) 800. 700. (m) 600. 500. G4 inverse, expander Linux version 8.23/06 02/11/03 08.01.35 βx βy Postprocessor/Zgoubi NoDate... Z (m) vs. Y 400. 300. Z (m) 0.01 0.005 0.0 -.005 -.01 200. 100. 0.0 0.008 0.007 0.006 0.005 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 s (m) δe/ p0c =0. Table name = TWISS G4 inverse, expander Linux version 8.23/06 02/11/03 08.01.35 SIGX SIGY -.01 -.005 0.0 0.005 0.01 Y (m) 0.004 0.003 0.002 0.001 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 s (m) δe/ p0c =0. Table name = TWISS x (m) 18/03/2005 P. Pérez & A. Rosowsky 49

Expander (2) 0.02 Z (m) vs X 0.02 Y (m) vs X 0.015 0.015 0.01 0.01 0.005 0.005 0.0 0.0 -.005 -.005 -.01 -.01 -.015 -.015 0.0 0.5 1. 1.5 2. 2.5 3. X (m) 0.0 0.5 1. 1.5 2. 2.5 3. X (m) 18/03/2005 P. Pérez & A. Rosowsky 50

Expander (3) q (rad) 0.006 0.004 0.002 0.0 -.002 -.004 j (rad) 0.006 0.004 0.002 0.0 -.002 -.004 -.006 -.001 -.0005 0.0 0.0005 0.001 Z (m) -.006 -.008 -.004 0.0 0.004 0.008 Y (m) 18/03/2005 P. Pérez & A. Rosowsky 51

Optimal Production Rates (E e+ <1 MeV) What next Finalize injection scheme (F. Meot/Saclay) Finalize engineering of collection system (SACM/Saclay) Shielding scheme: depends on location Study moderation a la DELFT hot or cold before trap 18/03/2005 P. Pérez & A. Rosowsky 52

Design differences (1) Rossendorf / Aarhus converter e - extraction lenses trap EPOS design + trap MeV e + W moderator E(decel.) dump 1.5 ev e + E (2-5 kv) converter Proposed design MeV e + e - efficiency trap temperature Tungsten 10-4 room Neon 10-2 7K Ne moderator 1.5 ev e + 18/03/2005 P. Pérez & A. Rosowsky 53

Design differences (2) Original EPOS design: 40 MeV, 0.25 ma, ~CW Linac Pt or W moderator, 3.5 mm Pt target Neutron activation Collection efficiency before trap 20% Expected Rate before trap 1.6 10 8 s -1 At 10 MeV, 2.5 ma 1mm target = 0.8 10 8 s -1 Proposed design: 10 MeV, 2.5 ma, CW Ne Moderator, thin W target Collection efficiency before trap 20% Expected rate before trap 1.1 10 10 s -1 E (MeV) I(mA) Mod. Activ. L wall Rate 40 0.25 Pt yes 30m 3m 1.6 10 8 10 2.5 W no 3m 2m 0.8 10 8 10 2.5 Ne no 3m 2m 10 10 18/03/2005 P. Pérez & A. Rosowsky 54

Other designs Thermal neutron capture: 113 Cd(n,) 114 Cd = 26000 barn!! By nuclear research reactor FRM2 in Munich (Germany) can reach 10 10 s -1 Building size: 40 m x 40 m x 30 m 18/03/2005 P. Pérez & A. Rosowsky 55

IBA2204-56 / Apr 1999

Operating principle (1) D E E G IBA2204-57 / Apr 1999

Rhodotron Models - Basic Specifications TT100 TT200 TT300 Energy (MeV) 3-10 Power range at 10 MeV (kw) 1-35 Design value (kw)* 45 3-10 3-10 1-80 1-150 100 > 200 Full (cavity) diameter (m) Full (cavity) height (m) Weight (T) 1.60 (1.05) 3.00 (2.00) 3.00 (2.00) 1.75 (0.75) 2.40 (1.80) 2.40 (1.80) 2.5 11 11 MeV/pass Number of passes 0.833 12 1.0 10 1.0 10 Stand-by kw used Full beam kw used <15 <15 <15 <210 <260 <370 IBA2204-58 / Apr 1999

Our bias. Idea for e+ use since 10 ~ 20 years.. but 10 largest US Univ: how many have a source? off the shelves components No neutron safety required low maintnance : 1 engineer low running costs : < 500 kwatts 18/03/2005 P. Pérez & A. Rosowsky 59

Compact e+ factory Ne + below 1 MeV > 10 13 s -1 Ne + at 1 ev > 10 10 s -1 Beam energy/intensity : 10 MeV ~2.5 ma Interdisciplinary lab: HEP Plasma Condensed Matter SR radiation control and infrastructure 10 MeV Linac target - collector beam dump 18/03/2005 P. Pérez & A. Rosowsky 60

Engineering improvements Replace H1 and the 4-poles Use hight Tc supraconductor No field on the beam axis: stable injection New vaccum chamber with magnets outside 18/03/2005 P. Pérez & A. Rosowsky 61

Version 2004 I = 2.5 ma X = 200 cm X = 320 cm e + e R yield 5 e + coll = 5 cm + rate 5 yield xe12 all 24% 5.0E-4 7.8 E <1 MeV 33% 2.4E-4 3.7 E < 600 KeV 25% 1.0E-4 1.6 I = 2.5 ma R coll = 10 cm all E <1 MeV E < 600 KeV 10 31% 36% 25% X = 200 cm e + yield 6.3E-4 2.6E-4 1.0E-4 e + rate xe12 9.8 4.1 1.6 23% 4.87E-4 7.6 32% 23% 2.37E-4 0.95E-4 5.99E-4 2.53E-4 1.02E-4 e + rate xe12 18/03/2005 P. Pérez & A. Rosowsky 62 3.7 1.5 X = 320 cm e + e yield + rate 10 xe12 29% 35% 25% 9.3 3.9 1.6

Positron energy spectrum Same number of electrons on target E(e - ) = 10 MeV E(e - ) = 100 MeV 45000 900 Ne + 800 Ne + 40000 35000 Low energy e + escape thin target 700 600 90 0 1mm 30000 3 0 150 μm 500 25000 400 300 200 3 0 50 μm 20000 15000 10000 90 0 3 mm 100 5000 0 0 1 2 3 4 5 6 E c (MeV) E e+ (MeV) 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 E e+ (GeV) 10 MeV 18/03/2005 P. Pérez & A. Rosowsky 63 100 MeV