Aromatic Fused Heterocyclic [22] Macrocycles with NIR Absorption

Similar documents
Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Supporting Information

Electronic Supplementary Information (ESI) for Chem. Commun.

Ni II Tetrahydronorcorroles: Antiaromatic Porphyrinoids with Saturated Pyrrole Units

Scalable synthesis of quaterrylene: solution-phase

Department of Chemistry, School of life Science and Technology, Jinan University, Guangzhou , China b

Supporting information

Ring expansion reactions of electron-rich boron-containing heterocycles. Supporting Information Contents

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Ethynylene-linked Figure-eight. Octaphyrin( ): Synthesis and. Characterization of Its Two Oxidation States

SUPPLEMENTARY INFORMATION

A Computational Model for the Dimerization of Allene: Supporting Information

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Metal-Free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons

Supporting Information

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Highly sensitive detection of low-level water contents in. organic solvents and cyanide in aqueous media using novel. solvatochromic AIEE fluorophores

Crystal structure landscape in conformationally flexible organo-fluorine compounds

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Supporting Information. Detection of Leucine Aminopeptidase Activity in Serum Using. Surface-Enhanced Raman Spectroscopy

Electronic Supporting Information

Motooka, Nishi, Fukuoka , Japan.

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge

Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its Role in Reaction of Carbon Dioxide and Propargylamines

Supplementary Information. Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, D Würzburg, Germany.

Supporting Information for. Acceptor-Type Hydroxide Graphite Intercalation Compounds. Electrochemically Formed in High Ionic Strength Solutions

A Key n π* Interaction in N-Acyl Homoserine Lactones

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

Detailed Syntheses. K 5H[Co II W 12O 40] 15H 2O (1). The synthesis was adapted from published methods. [1] Sodium tungstate

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Supplementary Information:

Supporting Information

Supplementary Information

SUPPORTING INFORMATION. In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper

SUPPLEMENTARY MATERIAL. Nitrogen Containing Ionic Liquids: Biodegradation Studies and

Supporting Information

Electronic Supplementary Information for:

Elucidating the structure of light absorbing styrene. carbocation species formed within zeolites SUPPORTING INFORMATION

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

Driving forces for the self-assembly of graphene oxide on organic monolayers

Synthesis, Characterization and Simulations of Mixed-Metal Cluster Containing Pt-Ag 2 Cyclometalpropane. Supporting Information

SUPPORTING INFORMATION

Supporting Information

Supramolecular assemblies of a nitrogen-embedded

Electronic relaxation dynamics of PCDA PDA studied by transient absorption spectroscopy

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32

Supporting Information

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Supporting Information for: Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches

Supplementary Material: 2D-IR Spectroscopy of an AHA Labelled Photoswitchable PDZ2 Domain

Supporting Information

Supporting Information Computational Part

Diferrocenyl tosyl hydrazone with an ultrastrong NH Fe hydrogen bond as double click switch

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, <S 2 > values for different radical systems. HS BS1 BS2 BS3 < S 2 >

Supplementary Information

Supplementary information

A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

ELECTRONIC SUPPLEMENTARY INFORMATION

Electronic Supplementary Information

Organic photodiodes constructed from a single radial heterojunction. microwire

Supporting Material Biomimetic zinc chlorin poly(4-vinylpyridine) assemblies: doping level dependent emission-absorption regimes

A Distyrylbenzene Based Highly Efficient Near-Infrared Emitting Organic

Supporting Information

Experimental Details. Supplementary material for

Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand. Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information

Supporting Information

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

Synthesis, electrochemical and theoretical studies of. V-Shaped donor-acceptor hexaazatriphenylene. (HAT) derivatives for second harmonic generation

Design Principles of Chemiluminescence Chemodosimeter for Self- Signaling Detection: Luminol Protective Approach

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR

Magnesium-mediated Nucleophilic Borylation of Carbonyl Electrophiles

SUPPORTING INFORMATION

Supporting Information

Ionic liquid electrolytes for reversible magnesium electrochemistry

Supporting Information. Reactive Simulations-based Model for the Chemistry behind Condensed Phase Ignition in RDX crystals from Hot Spots

Supporting information for: Role of N7 protonation of guanine in determining structure, stability and function of RNA base pairs

Aluminum Siting in the ZSM-5 Framework by Combination of

Synthesis and Electronic Properties of Length-Defined 9,10-Anthrylene Butadiynylene Oligomers

Supplementary Figure 1. Energy diagram of constitutional isomers 1a, 5a and 2a.

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

Supporting Information

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Nucleophilicity Evaluation for Primary and Secondary Amines

Transcription:

Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Aromatic Fused Heterocyclic [22] Macrocycles with NIR Absorption Harapriya Rath,* a Abhijit Mallick a, Tubai Ghosh a and Alok Kalita b a Department of Inorganic Chemistry, Indian Association for The Cultivation of Science, 2A/2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India b Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400 076, India E-mail: ichr@iacs.res.in Table of Contents Instrumentation and Materials.S2 General Synthetic Procedure and Spectroscopic Data.S4 1

Instrumentation and Materials 1.1 Electronic absorption spectra were measured with a PerkinElmer Lambda 950 UV-visible-NIR spectrophotometer, and variable temperature UV-vis NIR spectroscopic study was carried out in Unisoku Scientific cryostat. 1 H NMR spectra were recorded on a Bruker AVIII 500 MHz spectrometer, Bruker AVIII 400 MHz, Bruker DPX-300 MHz spectrometer and chemical shifts were reported as the delta scale in ppm relative to CHCl 3 (δ = 7.26 ppm) as internal reference for 1 H. MALDI-TOF MS data were recorded using Bruker Daltonics flex Analyser and ESI HR-MS data were recorded using Waters QTOF Micro YA263 spectrometer. Cyclic voltammograms were recorded using a platinum working electrode, a platinum wire counter electrode and an Ag/AgCl reference electrode in Bioanalytical Systems EC epsilon. The measurements were carried out in CH 2 Cl 2 solution using 0.1 M Bu 4 NPF 6 as the supporting electrolyte at a scan rate of 0.1 V/s. Peak potentials were determined from differential pulse voltammetry experiments. The Fc/Fc + redox couple was used as an internal standard. All solvents and chemicals were of reagent grade quality, obtained commercially and used without further purification except as noted. For spectral measurements, anhydrous dichloromethane was obtained by refluxing and distillation over CaH 2. Dry THF was obtained by refluxing and distillation over pressed Sodium metal. Thin layer chromatography (TLC) was carried out on alumina sheets coated with silica gel 60 F 254 (Merck 5554) and gravity column chromatography were performed using Merck Silica Gel 230-400 mesh. Aluminum Oxide (Basic) grade II was purchased from Sigma Aldrich. 1.2 X-ray Structure Determination A suitable shinning blue crystal of size 0.01 x 0.07 x 0.15 mm 3 was mounted on a Rigaku Saturn 724 CCD diffractometer with a fine- focus sealed tube Mo-K ( = 0.71075Å) X-ray source. Total 800 frames were collected at 150K with the exposure time of 16s per frame. Unit cell determination using both high angle and low angle diffraction reveal that compound crystallizes in triclinin P 1 space group. Data integration and indexing of 6 was done by using crystal clear. All calculations were carried out using the programs in WinGX module 1 and solved by direct methods (SIR-92). 2 The final refinement of the structure was carried out using least-squares method on F 2 using SHELX-97. 3 The final refinement of the solved structure converged at the R value of 0.0843 (I>2 (I)). All nonhydrogen atoms were refined anisotropically. All the hydrogen atoms were located from difference Fourier maps. 1.3 Theoretical Calculation Quantum mechanical calculations were carried out on Gaussian 09W 4 program suite to estimate the 2

NICS (0) values at the center of the molecular plane of all the two macrocycles. Density functional theory (DFT) with Becke s three-parameter hybrid exchange functional and the Lee-Yang-Parr correlation functional (B3LYP) and 6-31G (d) basis set for all the atoms employed in the calculations (SI). The molecular structure obtained from single crystal analysis was used to obtain the geometry optimized structures of 6. For macrocycle 5 and 7, since there is no crystal structure available, the molecules were drawn in Gauss View using the default parameters for bond lengths, angles and dihedrals. This initial structure was then subjected to complete geometry optimization based on the DFT-formalism. We have used the B3LYP/6-31G* level of theory to get the minimum energy structure. References: 1. L. J. Farrugia, WinGX, Version 1.64.05 J. Appl. Crystallogr., 1999, 32, 837. 2. A. Altomare, G. Cascarano, C. Giacovazzo and A. Gualardi, J. Appl. Crystallogra., 1993, 26, 343. 3. S3. G. M. Sheldrick, SHELXL-97, Program for Structure Refinement, University of Göttingen: Germany, 1997. 4. Gaussian 09, Revision B. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, W. H. G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Jr. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Steroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millan, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Incl., Wallingford CT, 2010 3

General Synthetic Procedure S Thieno[3,2-b]thiophene (1): This was synthesized as reported in literature. Yield: 60 S %). 1 H NMR (300 MHz, CDCl 3 ): [ppm]: 7.268-7.284 (d, 1H, J=4.8Hz); 7.387-7.404 (d, 1H, J=5Hz). 13 C NMR (75 MHz, CDCl 3, 300K, [ppm]): 119.65, 127.62, 139.73. HRMS (m/z):162.90 [M+Na] + (140.23 calc. for C 6 H 4 S 2 ). 2,5-Bis(tolylhydroxymethyl)-thieno[3,2-b]thiophene (2):To a 250mL round-bottomed flask equipped with a magnetic bar, Thieno[3,2-b]thiophene 1 (1gm, 7.13mmol) was placed followed by dry THF (40mL). The reaction mixture was stirred under inert atmosphere. N, N, N, N -Tetramethyl ethylenediamine (3.2mL, 0.021mol) was added followed by stirring for half an hour at room temperature. Afterward n-buli in hexane (1.6M) (13.04mL, 0.021mol) was added through rubber septa drop wise, yellow turbidity started forming. The reaction mixture was stirred at S room temperature for 2hrs and then heated to 66 o C for 1hour. The reaction mixture was brought room temperature after which it was HO S OH brought to ice cold temperature. At ice cold temperature, Tolylaldehyde (2mL, 0.017mol) in dry THF (40mL) was then added drop wise to the reaction mixture, the reaction mixture was stirred for 2 hours. The reaction mixture was quenched by saturated NH 4 Cl (aq) solution, product was extracted by diethyl ether, dried over Na 2 SO 4. The crude product was precipitate out by hexane and purified by silicagel column chromatography using hexane-ethyl acetate (1:0.4) solution. The solvent was evaporated and light yellow solid was obtained. Yield 2.09gm (77.5%). 1 H NMR (500MHz,CDCl 3, 300K, [ppm]): 2.353(s, 3H); 6.026(s, 1H); 6.979(s, 1H); 7.170-7.186(d, 1H, 3 J=8Hz); 7.330-7.346(d, 1H, 3 J=8Hz). 13 C NMR (125 MHz, CDCl 3, 300K, [ppm]): 21.10, 81.714, 117.92, 126.82, 129.19, 137.78, 137.88, 138.205, 148.05. HRMS (m/z) 380.593[M + ] (380.52 calc. for C 22 H 20 O 2 S 2 ). H N Phenanthrene-fused Pyrrole (3): Following the literature reported method, compound 3 was obtained in 85% yield. 1 H NMR (300MHz, CDCl 3, 300K, [ppm]): 7.433-7.481 (m, 4H); 7.579-7.588 (d, 2H, J=2.7Hz); 8.047-8.066 (d, 2H, J= 5.7 Hz); 8.445-8.472 (d, 2H, J=8.1 Hz); 8.948 (brs, 1H). 13 C NMR (75MHz, CDCl 3, 300K, [ppm]): 110.27, 119.80, 123.24, 123.54, 125.04, 126.88, 128.81, 129.46. HRMS (m/z): 217.83[M + ] (217.27 calc. for C 16 H 11 N). Acenaphthylene-fused Pyrrole (4): Following literature reported method, compound 4 was obtained in 91% yield. 1 H NMR (500 MHz, CDCl 3, 300K, [ppm]): 7.011-7.015 (d, 1H, N H 4

3 J=2Hz); 7.473-7.502 (t, 1H, 3 J=7.5Hz); 7.568-7.582 (d, 1H, 3 J=7Hz); 7.614-7.630 (d, 1H, 3 J=8Hz); 8.139 (brs, 1H). 13 C NMR (125 MHz, CDCl 3, 300K, [ppm]): 110.74, 118.64, 124.71, 127.71, 128.85, 131.03, 133.87, 137.89. HRMS (m/z):208.07 [M+H 2 O] + (191.25 calc. for C 14 H 9 N). General synthetic procedure of Compound 5, 6 and 7: Under nitrogen atmosphere and in dark condition a solution of 380mg of compound 2 (1mmol) and 69 L pyrrole /217mg compound 3/191mg 4 (1mmol) in 250 ml dry dichloromethane was stirred for 30 minutes. Afterward, catalytic amount of BF 3 - Et 2 O (0.10mL) was added to the reaction mixture and stirred at RT for 90 minutes. Then 2.5 equivalents DDQ (567mg, 2.5 mmol) was added and opened to air and the mixture was stirred for another 1 hour. The solvent was removed under reduced pressure and compound was filtered by basic alumina followed by repeated silica gel column chromatography with the mixture of 5% methanol-dichloromethane solution. After recrystallization, the title compound was yielded as dark green crystal. Compound 5: Yield.48mg (~5%). 1 H NMR (500 MHz, CDCl 3, -40 o C, [ppm], TMS): -2.1 (brs, 1H, NH);-0.074 (s, 1H, Inner -H of Thienothiophene); 2.761 (s, 3H, methyl); 7.851-7.895 (2H, tolyl CH); 8.975 (s, 1H); 9.264 (s, pyrrole -H) ;9.278 (brs, 2H, tolyl CH). MALDI-TOF MS (m/z): 816.10 (Calc. for C 52 H 36 N 2 S 4 exact mass: 816.18). UV-VIS (CH 2 Cl 2, λ [nm], (ϵ [M -1 cm -1 x10 3 ]), 298K): 503(68.73); 530 (50.67); 725 (22.33); 868 (9.22); 957 (5.33). [(UV-VIS [CH 2 Cl 2, 1% TFA/CH 2 Cl 2, λ [nm], (ϵ [M -1 cm -1 x10 3 ]), 298K)]: 509 (93.98); 540 (67.76); 867 (57.6). Compound 6: Yield.95mg (~8%). 1 H NMR (500 MHz, CDCl 3, -40 o C, [ppm], TMS): -1.543 (brs, 1H); 0.721 (s, 1H), 2.632 (s, 6 H); 7.439-7.445 (br, 2H); 7.488-7.503 (d, 2H, J=7.5Hz); 7.521-7.536 (d, 2H, J=7.5Hz); 8.013-8.029 (d, 2H, J= 8Hz); 8.071-8.087 (d, 2H, J= 8Hz); 8.623-8.637 (d, 2H, J= 7Hz); 8.735 (s, 1H); 8.889-8.905 (d, 2H, J= 8Hz); 9.573-9.587 (d,2h, J= 7Hz); 9.616-9.631 (d, 2H, J= 7.5Hz). MALDI-TOF MS (m/z): 1117.278 (Calc. for C 76 H 48 N 2 S 4 exact mass: 1117.27). UV-VIS (CH 2 Cl 2, λ [nm], (ϵ [M -1 cm -1 x10 3 ]), 298K): 557(60.13); 654(7.62); 716(8.53); 969(3.50).UV-VIS [CH 2 Cl 2, 1% TFA/CH 2 Cl 2, λ [nm], (ϵ [M -1 cm -1 x10 3 ]), 298K]: 584 (67.36); 806(16.14); 963(8.98). Compound 7.: Yield.105mg (~10%) 1 H NMR (500MHz, CDCl 3, 0 o C, [ppm], TMS): -2.028 (brs, 1H); 0.117 (s, 1H); 2.817(s, 3H); 2.831 (s, 3H); 6.593-6.610 (d, 2H, J=8.5Hz); 6.855-6.869 (d, 1H, J=7Hz); 6.982-6.996 (d, 1H, J=7Hz); 7.070-7.091(d, 2H, J=8.5Hz); 7.579-7.618(m, 2H); 8.068-8.083(d, 2H, J=7.5Hz); 8.106-8.121(d, 1H, J=7.5Hz); 8.166-8.199 (t, 1H, J=8.5Hz); 9.055 (s, 1H); 9.303-9.318(d, 1H, J=7.5Hz); 9.337-9.352 (d, 1H, J=7.5Hz). MALDI-TOF MS (m/z): 1065.32 (Calc. for C 72 H 44 N 2 S 4 exact mass: 1065.24).UV-VIS (CH 2 Cl 2, λ [nm], (ϵ [M -1 cm -1 x10 3 ]), 298K): 559(68.80); 661(7.44); 725(8.88); 839(3.12); 939(3.20). UV-VIS [CH 2 Cl 2, 1% TFA/CH 2 Cl 2, λ [nm], (ϵ [M -1 cm -1 x10 3 ]), 298K]: 586(97.12); 850(20.08); 927(12.85). 5

Supplementary Data Figure S1. HRMS Spectra of 1 Figure S2. HRMS Spectra of 2 Figure S3. HRMS Spectra of 3 6

Figure S4. HRMS Spectra of 4 Figure S5. MALDI-TOF MS Spectra of 5 7

Figure S6. MALDI-TOF MS Spectra of 6 Figure S7. MALDI-TOF MS Spectra of 7 8

Figure S8. 1 H NMR Spectrum of 1 Figure S9. 13 C NMR Spectrum of 1 9

Figure S10. 1 H NMR Spectrum of 2 Figure S11. 13 C NMR Spectrum of 2 10

Figure S12. 1 H NMR Spectrum of 3 Figure S13. 13 C NMR Spectrum of 3 11

Figure S14. 1 H NMR Spectrum of 4 Figure S15. 13 C NMR Spectrum of 4 12

Figure S16. Acid titration UV-vis Spectra of 5 in CH 2 Cl 2 Figure S17. Low Temperature UV-vis Spectra of 5 in Dry Toluene 13

Figure S18. High Temperature UV-vis Spectra of 5 in Dry Toluene Figure S19. Acid titration UV-vis Spectra of 6 in CH 2 Cl 2 14

Figure S20. Low Temperature UV-vis Spectra of 6 in Dry THF Figure S21. High Temperature UV-vis Spectra of 6 in Dry Toluene 15

Figure S22. Acid titration UV-vis Spectra of 7 in CH 2 Cl 2 Figure S23. Low Temperature UV-vis Spectra of 7 in Dry THF 16

Figure S24. High Temperature UV-vis Spectra of 7 in Dry Toluene Figure S25. Comparative UV-vis Spectra of free base and protonated forms of 5, 6 and 7 in CH 2 Cl 2 17

Figure S26. Acid titration 1 H NMR Spectra of compound 5 at room temperature (10% TFA-d / CDCl 3 mixture) 18

Figure S27. Variable temperature 1 H NMR Spectra of protonated 5 (10% TFA-d / CDCl 3 mixture) 19

Figure S28. Complete assignment of 1 H NMR Spectra of completely protonated 5 at -40 0 C Figure S29. Acid titration 1 H NMR Spectra of compound 6 at room temperature (10% TFA-d / CDCl 3 mixture) 20

Figure S30. Variable temperature 1 H NMR Spectra of protonated 6 (10% TFA-d / CDCl 3 mixture) Figure S31. 1 H - 1 H COSY Spectra of completely protonated 6 at -40 0 C 21

Figure S32. Complete assignment of 1 H NMR Spectra of completely protonated 6 at -40 0 C Figure S33. Acid titration 1 H NMR Spectra of compound 7 at room temperature (10% TFA-d / CDCl 3 mixture) 22

Figure S34. Low VT 1 H NMR Spectra of Protonated 7 (10% TFA-d / CDCl 3 mixture) Figure S35. 1 H- 1 H COSY spectra of protonated 7 at 0 0 C 23

Figure S36.Complete 1 H NMR assignment of protonated 7 at 0 0 C Figure S37. D 2 O Exchange spectrum of protonated 7 at RT : Residual solvent peak or solvent impurity 24

Figure S38. Cyclic Voltammogram of 6 in CH 2 Cl 2 Figure S39. Cyclic Voltammogram of 7 in CH 2 Cl 2 25

Figure S40. Energy minimized structure of 5, 6 and 7 by DFT method at B3LYP/6-31G* level using Gaussian 09 program (top view) Figure S41. Energy minimized structure of 5, 6 and 7 by DFT method (side view) Figure S42. Calculated NICS (0) value for 5, 6 and 7 Figure S43. Plot of Chemical shift vs distance of NICS probe for 5, 6 and 7 26

Figure S44. HOMA values from X-ray crystal structure (left) and energy minimized structure (right) of 6 Figure S45. HOMA value from DFT-optimized structure of 5 and 7 Figure S46. FMO energy diagram from DFT-optimized structure of 5, 6 and 7 27

Figure S47. Dihedral Angle between fused thiophene ring plane and Macrocycle plane (defined through meso carbons) for 6 Figure S48. Dihedral Angle between tolyl ring plane (C32, C33, C34, C35, C36, C37) and Macrocycle plane (defined through meso carbons) for 6 28

Figure S49. Dihedral Angle between tolyl ring plane (C24, C25, C26, C27, C28, C29) and Macrocycle plane (defined through meso carbons) for 6 Figure S50. Molecular Structure of 6 with atom labelling 29

Crystal data and structure refinement for 6 Empirical formula C76 H48 N2 S4 Formula weight 1117.40 Temperature Wavelength Crystal system 150(2) K 0.71075 Å Triclinic Space group P -1 Unit cell dimensions a = 8.230(5) Å = 78.34(2). B = 14.220(9) Å = 76.48(2). C = 14.339(9) Å = 83.47(3). Volume 1594.0(17) Å 3 Z 1 Density (calculated) 1.164 Mg/m 3 Absorption coefficient 0.193 mm -1 F(000) 582 Crystal size 0.15 x 0.07 x 0.01 mm 3 Theta range for data collection 2.66 to 25.00. Index ranges -9<=h<=6, -16<=k<=16, -17<=l<=15 Reflections collected 11841 Independent reflections 5558 [R (int) = 0.0527] Completeness to theta = 25.00 99.0 % Absorption correction Semi-empirical from equivalents Max. And min. Transmission 0.9981 and 0.9717 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 5558 / 0 / 371 Goodness-of-fit on F 2 1.128 Final R indices [I>2sigma (I)] R1 = 0.0843, wr2 = 0.1643 R indices (all data) R1 = 0.1083, wr2 = 0.1759 Largest diff. Peak and hole 0.346 and -0.305 e.å -3 CCDC number 990113 30

Computational Details: Cartesian Coordinates of DFT- optimized Structure of 5 No. Atom X Y Z 1 C -0.703985 3.773054-0.257178 2 C 0.575104 3.274639-0.482147 3 C -1.722284 2.817245-0.524578 4 C 0.580037 1.959655-1.009782 5 C 2.859210 2.164979-0.587639 6 C 1.824482 1.366289-1.101339 7 C 4.172430 1.726543-0.269724 8 C 5.265423 2.700240-0.067734 9 C 4.413147 0.329652-0.086575 10 C 5.692173-0.381594-0.113540 11 C 3.944383-1.799442 0.119235 12 C 5.398756-1.710255-0.003107 13 C -3.112943 2.946706-0.258315 14 C -3.944289 1.799467-0.119593 15 C -4.413257-0.329614 0.086294 16 C -5.398687 1.710383 0.002564 17 C -5.692202 0.381754 0.113072 18 C -1.824510-1.366227 1.101273 19 C -0.579968-1.959573 1.009580 20 C -2.859133-2.164786 0.587389 21 C -0.575061-3.274351 0.481564 22 C 1.722316-2.817097 0.524234 23 C 0.704091-3.772746 0.256466 24 C 3.113115-2.946568 0.257982 25 C -4.172526-1.726369 0.269592 26 C -3.678287 4.301758-0.049389 27 C -4.775356 6.898984 0.335221 28 C -5.333439 8.284705 0.556718 29 C -5.043030 5.858578 1.235308 30 C -4.506939 4.586729 1.051543 31

31 C -3.951442 6.616107-0.762436 32 C -3.409922 5.347280-0.951775 33 C -5.265428-2.700286 0.068056 34 C -7.366142-4.580337-0.315035 35 C -7.201921-3.490713-1.182026 36 C -6.176256-2.568550-0.998119 37 C -6.457328-4.716465 0.742666 38 C -5.428310-3.798529 0.933571 39 C -8.498775-5.561026-0.503303 40 C 3.678313-4.301671 0.049080 41 C 4.775045-6.899061-0.335426 42 C 3.409667-5.347180 0.951417 43 C 3.951035-6.616068 0.762141 44 C 4.507013-4.586771-1.051777 45 C 5.042939-5.858699-1.235490 46 C 5.332970-8.284853-0.556863 47 C 7.366302 4.579882 0.316476 48 C 5.428773 3.798639-0.932964 49 C 6.457855 4.716382-0.741501 50 C 6.175881 2.568121 0.998708 51 C 7.201638 3.490082 1.183155 52 C 8.499016 5.560362 0.505331 53 S -2.219939-3.792223 0.135728 54 S 1.020655-1.303132 1.146399 55 S -1.020576 1.303060-1.146304 56 S 2.220036 3.792663-0.136605 57 N -3.406604 0.559999-0.079467 58 N 3.406619-0.559893 0.079217 59 H -6.309583 8.250226 1.052373 60 H -4.668109 8.883987 1.193009 61 H -5.451727 8.825317-0.388248 62 H -5.675093 6.049168 2.100033 63 H -4.714510 3.805126 1.776020 32

64 H -3.736691 7.399595-1.485924 65 H -2.790806 5.150601-1.822146 66 H -6.097371 2.536049-0.019201 67 H -6.668331-0.065168 0.248150 68 H -6.054810-1.749737-1.700476 69 H -7.881160-3.369859-2.023169 70 H -6.560698-5.551141 1.432474 71 H -4.753815-3.917236 1.776225 72 H -8.735116-5.702088-1.563546 73 H -9.415578-5.208222-0.011645 74 H -8.257138-6.539870-0.076185 75 H -2.001726-0.355203 1.430696 76 H 0.929966-4.744260-0.164728 77 H 2.790438-5.150427 1.821689 78 H 3.736079-7.399529 1.485598 79 H 5.450938-8.825536 0.388103 80 H 4.667717-8.883992-1.193365 81 H 6.309255-8.250488-1.052246 82 H 5.675052-6.049374-2.100158 83 H 4.714722-3.805215-1.776263 84 H 6.097498-2.535873 0.018604 85 H 6.668242 0.065474-0.248598 86 H 6.054092 1.749144 1.700828 87 H 7.880599 3.368911 2.024478 88 H 4.754598 3.917624-1.775837 89 H 6.561585 5.551191-1.431094 90 H 8.257665 6.539335 0.078346 91 H 9.415929 5.207539 0.013887 92 H 8.735046 5.701141 1.565681 93 H -0.929885 4.744678 0.163750 94 H 2.001651 0.355187-1.430539 33

Computational Details: Cartesian Coordinates of DFT- optimized Structure of 6 No Atom X Y Z 1 S 1.249400-1.075677-1.252233 2 S -1.533753-3.969321-0.008429 3 N 3.549490 0.004420-0.068964 4 C 2.179210-2.419128-0.539283 5 C 1.317739-3.484453-0.177998 6 H 1.683862-4.373643 0.312266 7 C -0.016409-3.205438-0.419908 8 C -2.446162-2.527038-0.578447 9 C -1.567248-1.587125-1.146715 10 H -1.921825-0.647209-1.533682 11 C -0.239941-1.949481-1.035307 12 C 3.580009-2.364788-0.321383 13 C 4.274328-1.119930-0.246610 14 C 5.708738-0.778862-0.189258 15 C 6.914052-1.461693-0.596351 16 C 6.903447-2.632623-1.385872 17 H 5.958280-3.067471-1.670629 18 C 8.071649-3.210646-1.835997 19 H 8.029559-4.102753-2.450580 20 C 9.306741-2.629237-1.518314 21 H 10.228479-3.072968-1.877621 22 C 9.345738-1.468840-0.772289 23 H 10.306016-1.009207-0.579210 24 C 8.168622-0.851090-0.297795 25 C 8.206935 0.392732 0.464345 26 C 9.409701 0.900231 1.001123 27 H 10.331685 0.351725 0.860388 28 C 9.439879 2.064020 1.742293 29 H 10.378718 2.421888 2.149845 34

30 C 8.249608 2.760578 1.992449 31 H 8.258908 3.656666 2.602595 32 C 7.057922 2.291095 1.481627 33 H 6.143765 2.81416 1.714691 34 C 7.001415 1.120068 0.694075 35 C 5.762483 0.556576 0.212463 36 C 4.369864 1.043371 0.185855 37 C 4.252868-3.642401 0.026859 38 C 4.105760-4.789734-0.766342 39 H 3.513268-4.736378-1.672606 40 C 4.733478-5.982812-0.422789 41 H 4.614445-6.850113-1.064276 42 C 5.518449-6.082439 0.729503 43 C 5.655039-4.940086 1.527315 44 H 6.254331-4.988463 2.431035 45 C 5.039200-3.743887 1.185226 46 H 5.158117-2.876233 1.822963 47 C 6.193094-7.376731 1.111592 48 H 7.264442-7.230674 1.277504 49 H 6.072779-8.133662 0.334178 50 H 5.774700-7.781378 2.038989 51 C -3.821710-2.364616-0.292945 52 C -4.615461-3.552678 0.096034 53 C -4.561415-4.747364-0.638434 54 H -3.960354-4.793696-1.539023 55 C -5.298208-5.861019-0.249105 56 H -5.245678-6.766979-0.844253 57 C -6.108866-5.831374 0.888678 58 C -6.155200-4.642333 1.627268 59 H -6.768871-4.592369 2.521240 60 C -5.427964-3.525789 1.241950 61 H -5.473635-2.622039 1.837293 62 C -6.916569-7.033264 1.311141 35

63 H -6.693243-7.317286 2.343900 64 H -6.712516-7.895567 0.673612 65 H -7.989834-6.823879 1.258801 66 S -1.249398 1.075646 1.252279 67 S 1.533751 3.969292 0.008481 68 N -3.549486-0.004453 0.068972 69 C -2.179207 2.419097 0.539332 70 C -1.317743 3.484428 0.178063 71 H -1.683868 4.373623-0.312191 72 C 0.016409 3.205409 0.419963 73 C 2.446161 2.527005 0.578481 74 C 1.567254 1.587090 1.146749 75 H 1.921832 0.647171 1.533707 76 C 0.239943 1.949447 1.035349 77 C -3.580008 2.364755 0.321424 78 C -4.274322 1.119905 0.246608 79 C -5.708731 0.778857 0.189178 80 C -6.914051 1.461719 0.596194 81 C -6.903457 2.632677 1.385675 82 H -5.958292 3.067519 1.670451 83 C -8.071667 3.210733 1.835734 84 H -8.029589 4.102860 2.450288 85 C -9.306757 2.629332 1.518019 86 H -10.228502 3.073091 1.877273 87 C -9.345742 1.468915 0.772025 88 H -10.306021 1.009295 0.578917 89 C -8.168617 0.851132 0.297597 90 C -8.206917-0.392703-0.464525 91 C -9.409668-0.900187-1.001350 92 H -10.331650-0.351666-0.860659 93 C -9.439831-2.063979-1.742517 94 H -10.378658-2.421834-2.150108 95 C -8.249559-2.760553-1.992621 36

96 H -8.258846-3.656642-2.602767 97 C -7.057889-2.291086-1.481751 98 H -6.143729-2.814163-1.714777 99 C -7.001397-1.120059-0.694198 100 C -5.762476-0.556583-0.212534 101 C -4.369861-1.043391-0.185868 102 C -4.252877 3.642378-0.026764 103 C -4.105752 4.789686 0.766471 104 H -3.513235 4.736303 1.672717 105 C -4.733484 5.982771 0.422971 106 H -4.614437 6.850053 1.064482 107 C -5.518485 6.082432-0.729298 108 C -5.655093 4.940103-1.527142 109 H -6.254411 4.988506-2.430843 110 C -5.039241 3.743896-1.185106 111 H -5.158173 2.876261-1.822866 112 C -6.193140 7.376735-1.111331 113 H -7.264481 7.230674-1.277275 114 H -6.072851 8.133626-0.333873 115 H -5.774730 7.781439-2.038697 116 C 3.821710 2.364586 0.292965 117 C 4.615460 3.552660-0.095978 118 C 4.561409 4.747326 0.638524 119 H 3.960342 4.793631 1.539110 120 C 5.298205 5.860992 0.249231 121 H 5.245672 6.766900 0.844406 122 C 6.108870 5.831379-0.888547 123 C 6.155210 4.642359-1.627171 124 H 6.768888 4.592420-2.521140 125 C 5.427972 3.525804-1.241890 126 H 5.473647 2.622070-1.837257 127 C 6.916567 7.033284-1.310978 128 H 6.693144 7.317411-2.343687 37

129 H 6.712603 7.895534-0.673348 130 H 7.989831 6.823863-1.258768 131 Bq 0 0 0 Computational Details: Cartesian Coordinates of DFT- optimized Structure of 7 No Atom X Y Z 1 C 1.329571-3.610466-0.446323 2 C -0.016363-3.309795-0.607764 3 C 2.171356-2.466969-0.612878 4 C -0.237601-1.952669-0.995100 5 C -2.443325-2.573040-0.587121 6 C -1.559386-1.568191-1.029313 7 C 0.237559 1.952128 0.995188 8 C 2.443298 2.572335 0.587255 9 C 0.016441 3.309325 0.608236 10 C -2.171311 2.466622 0.612923 11 C -1.329521 3.610097 0.446740 12 C -4.303896-1.068632-0.015976 13 C -4.223792 1.164344 0.232098 14 C -5.684085-0.586879-0.042119 15 C -5.632778 0.810777 0.104173 16 C -7.084861-0.999685-0.234031 17 C -7.002220 1.349335 0.080829 18 C -7.840636 0.210878-0.136612 19 C -7.770633-2.175719-0.474231 20 C -9.189602-2.132002-0.603195 21 C -9.233074 0.274693-0.243760 22 C -9.911653-0.957578-0.488516 23 C -7.606115 2.584793 0.221458 24 C -9.026120 2.671011 0.131241 38

25 C -9.825751 1.565867-0.099125 26 C 4.223825-1.164501-0.232659 27 C 4.304131 1.068489 0.015325 28 C 5.632907-0.810948-0.105575 29 C 5.684425 0.586713 0.040515 30 C 7.002274-1.349678-0.083273 31 C 7.085486 0.999410 0.230963 32 C 7.841011-0.211293 0.133197 33 C 7.605864-2.585241-0.224319 34 C 9.025933-2.671639-0.135464 35 C 9.233567-0.275260 0.238807 36 C 9.825927-1.566537 0.093858 37 C 9.912614 0.957021 0.482188 38 C 9.190877 2.131614 0.596987 39 C 7.771764 2.175466 0.469661 40 C 3.563031-2.406597-0.382101 41 C 4.648850 3.564585-0.034024 42 C -3.563009 2.406311 0.381850 43 C -3.795369-2.382667-0.233331 44 C -4.649046-3.564479 0.035557 45 C -6.232959-5.841013 0.595713 46 C -4.766708-4.604352-0.902015 47 C -5.553456-5.722703-0.623863 48 C -5.335828-3.678992 1.258377 49 C -6.110750-4.801211 1.531876 50 C -7.072738-7.065156 0.911342 51 C -4.294965 3.687446 0.173107 52 C -4.426769 4.618960 1.214278 53 C -5.104723 5.820711 1.006712 54 C -4.847569 3.992744-1.080822 55 C -5.513476 5.199985-1.284637 56 C -5.653725 6.131789-0.245406 57 C 5.335456 3.681345-1.255793 39

58 C 6.112486 4.803840-1.526273 59 C 6.235548 5.840570-0.588191 60 C 5.556417 5.719301 0.632411 61 C 4.768281 4.602072 0.907076 62 C 7.062353 7.074064-0.901103 63 C 4.295077-3.687653-0.173206 64 C 5.654039-6.131861 0.245530 65 C 5.514239-5.199713 1.284500 66 C 4.848211-3.992546 1.080578 67 C 5.104512-5.821181-1.006476 68 C 4.426499-4.619496-1.214150 69 C 6.359570-7.455367 0.480717 70 S 1.225370-1.022702-1.041348 71 S -1.550025-4.114646-0.308086 72 S -1.225441 1.022240 1.041186 73 S 1.550184 4.114065 0.308638 74 N 3.477134-0.013430-0.174870 75 N -3.477026 0.013162 0.174650 76 H 1.731386-4.566747-0.147980 77 H -1.912967-0.573675-1.231073 78 H -4.257234-4.520555-1.854774 79 H -5.644164-6.510992-1.363325 80 H -7.166095-7.713176 0.034801 81 H -6.614165-7.648655 1.719356 82 H -8.079051-6.776402 1.235992 83 H -6.627962-4.875915 2.482681 84 H -5.247838-2.882916 1.987405 85 H -7.255702-3.121936-0.560688 86 H -9.715074-3.060938-0.793803 87 H -10.991892-0.965738-0.586112 88 H -10.902888 1.673095-0.168627 89 H -9.488138 3.645218 0.244639 90 H -7.026466 3.480796 0.391290 40

91 H -4.752237 3.278141-1.889312 92 H -5.933452 5.421484-2.260114 93 H -5.211158 6.524501 1.825437 94 H -4.008766 4.387976 2.186941 95 H -5.663622 8.190977-0.904421 96 H 5.650194 6.504346 1.375132 97 H 4.260092 4.515026 1.860236 98 H 6.631666 4.879437-2.475739 99 H 5.248167 2.886674-1.986437 100 H 6.471526 7.792565-1.484066 101 H 7.949487 6.814296-1.488137 102 H 7.387849 7.572417 0.017378 103 H 9.716658 3.060659 0.786167 104 H 7.257312 3.121940 0.555826 105 H 10.992974 0.965077 0.578453 106 H 10.903126-1.673869 0.162235 107 H 9.487717-3.645924-0.249150 108 H 7.025932-3.481176-0.393526 109 H 7.189622-7.338173 1.185156 110 H 6.754579-7.861591-0.455742 111 H 5.662783-8.192098 0.901185 112 H 5.934652-5.420880 2.259863 113 H 4.753217-3.277688 1.888884 114 H 5.210662-6.525200-1.825044 115 H 4.008151-4.388796-2.186731 116 H 1.912885 0.572879 1.230604 117 H -1.731262 4.566478 0.148610 118 C 3.795469 2.382201 0.233417 119 C 1.559370 1.567480 1.029156 120 C -6.359375 7.455259-0.480516 121 H -7.191726 7.337255-1.182126 122 H -6.751269 7.863155 0.456518 123 Bq 0 0 0 41