UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

Similar documents
M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

For this purpose, we need the following result:

Summary: Binomial Expansion...! r. where

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

ME 501A Seminar in Engineering Analysis Page 1

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

PROGRESSION AND SERIES

Frequency-domain Characteristics of Discrete-time LTI Systems

Advanced Higher Maths: Formulae

Generating Function for

Advanced Higher Maths: Formulae

2002 Quarter 1 Math 172 Final Exam. Review

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

PhysicsAndMathsTutor.com

Conditional Convergence of Infinite Products

Chapter 7 Infinite Series

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder

1 Tangent Line Problem

On the k-lucas Numbers of Arithmetic Indexes

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

The Discrete Fourier Transform

Multivector Functions

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Course 121, , Test III (JF Hilary Term)

f(w) w z =R z a 0 a n a nz n Liouville s theorem, we see that Q is constant, which implies that P is constant, which is a contradiction.

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

MATH Midterm Solutions

POWER SERIES R. E. SHOWALTER

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

PhysicsAndMathsTutor.com

,... are the terms of the sequence. If the domain consists of the first n positive integers only, the sequence is a finite sequence.

The Definite Integral

2.Decision Theory of Dependence

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

10. 3 The Integral and Comparison Test, Estimating Sums

National Quali cations SPECIMEN ONLY

PhysicsAndMathsTutor.com

Auto-correlation. Window Selection: Hamming. Hamming Filtered Power Spectrum. White Noise Auto-Covariance vs. Hamming Filtered Noise

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

Surds, Indices, and Logarithms Radical

Counting Functions and Subsets

EXERCISE - 01 CHECK YOUR GRASP

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

We will begin by supplying the proof to (a).

Review of the Riemann Integral

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

Numerical integration

lecture 16: Introduction to Least Squares Approximation

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

Limits and an Introduction to Calculus

«A first lesson on Mathematical Induction»

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

On ARMA(1,q) models with bounded and periodically correlated solutions

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

1.3 Continuous Functions and Riemann Sums

Section 6.3: Geometric Sequences

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

On composite conformal mapping of an annulus to a plane with two holes

MAS221 Analysis, Semester 2 Exercises

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

Ma 530 Introduction to Power Series

On Almost Increasing Sequences For Generalized Absolute Summability

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

The z Transform. The Discrete LTI System Response to a Complex Exponential

Advanced Higher Formula List

PhysicsAndMathsTutor.com

Section IV.6: The Master Method and Applications

I PUC MATHEMATICS CHAPTER - 08 Binomial Theorem. x 1. Expand x + using binomial theorem and hence find the coefficient of

Engineering Mathematics I (10 MAT11)

Asymptotic Expansions of Legendre Wavelet

PROGRESSIONS AND SERIES

I. Exponential Function

Lesson 4 Linear Algebra

Semiconductors materials

Indices and Logarithms

Sequence and Series of Functions

Chapter #2 EEE Subsea Control and Communication Systems

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

Transcription:

UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig

TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio theoem..fomtio of diffeece equtios 5.Solutios of diffeece equtios usig -Tsfom

Itoductio The -Tsfom pls impott ole i the commuictio egieeig. I commuictio egieeig thee e two bsic tpes of sigls e ecouteed. The e cotiuous time sigl d discete time sigls. The cotiuous time sigls e defied b the idepedet vible time d e deoted b fuctio ft..

O the othe hd, discete time sigls e defied ol t discete set of vlues of the idepedet vible d e deoted b sequece {x}. Fo the cotiuous time sigl, Lplce tsfom d Fouie tsfom pl impott ole. - Tsfom pls impott ole i discete time sigl lsis.

Defiitio Let {x} be sequece defied fo, ±, ±, ±,. The the two sided -tsfom of the sequece x is defied s whee is complex vible i geel. Defiitio {x} X If {x} is csul sequece, i.e., x fo <, the the -tsfom educes to oe-sided -tsfom d is defied s {x} X x Note: The ifiite seies will be coveget ol fo ceti vlues of depedig o the sequece x. x x

Defiitio The ivese -tsfom of {x} X is defied s Defiitio - {x} {x} The uit smple sequece δ is defied s the sequece with vlues Defiitio 5 δ fo fo Tht uit step sequece u hs vlues u fo fo <

Defiitio 6 If ft is fuctio defied fo discete vlues of t whee t T,,,, T beig the smplig peiod, the -tsfom of ft is defied s Now we follow the ottios i [ft F d ii {x} X [ft] ft iii We shll mostl del with oe sided - tsfom which will be hee fte efeed to s - tsfom. ft

Theoem The -tsfom is lie i.e., i [ftbgt] [ft] b[gt] ii [{x} b{}] {x} b{} Poof i [ft bgt] [ft bgt] ft b [ft] b[gt] gt ii [{x} b{}] F bg [x b] x b X by {x} b{}

Theoem Fequec shiftig i ii Poof i ii F [ ft] X [ x] ft ft] [ ft F x x] [ x X

Theoem i [ft] d d [ft] d d F ii Poof i [x] [ft] d d ft [x] X Diffeetitig w..t d d d d [ft] d d F df d ft [ft] ft ft [ft] d F d

ii X {x} x, diffeetitig w..t d d X x x {x {x} d d X

Theoem i ii [ft T] [F f] k f T f T f[k T] [ft kt] F f T k Poof i [ft T ft T m m f[ T] fmt fmt m m fmt m fmt m Extedig this esult, we get m m f Put [F f] m

ii kt]} {f[ T] [ft m k Put kt] f[ k m k m fmt k m m k fmt k m m m m k fmt fmt k k T] f[k... ft ft f F

Theoem 5 Shiftig theoem If F the T T [ft] [e ft] F[e ] Poof [e T ft] e T ft fte T F[e T ] [F] e T

Theoem 6 Iitil vlue theoem If [ft] F the Poof f lim F F [ft] ft f T f T f T... ft ft f... Tkig limit s lim F f

Theoem 7 Fil vlue theoem If [ft] F the Poof lim ft t lim F [ f t T f t] [ f T T f T ] [ f t T ] [ f t] [ f T T f T] F f F [ f T T f T]

Tkig limit s lim F f lim [ft T ft] [ft T ft] lim [ft f ft ft... f[ T] ft] lim F f lim f[ T] f f f f f f lim ft t lim F

Covolutio of Sequeces The covolutio of two sequeces {x} d {} is defied s x * w w k xk k if the sequeces e o-csul k xk k if the sequeces e csul The covolutio of two fuctios ft d gt is defied b ft gt k fktg[ kt]

Theoem Covolutio theoem i ii if {x} Poof i Let X d {} Y, the {x } X Y if {ft} F d { gt} G, the {ft gt} F G {x} X {} Y X Y x x k k x k k

B defiitio [x ] Fom equtio d [x ] k [x ] X Y xk k [x] [] Note: [XY] x [X] [Y]

ii If F d G e oe sided -tsfom of ft d gt Q m FG fmt gt m ft gt m k [fmtgt [ft gt] [ft gt] k [ft gt] F G m fktg{ kt} fktg{ kt} ]

-Tsfoms of some bsic fuctios Result { δ} Poof δ fo fo {δ} δ

Result Whee u is uit step sequece [] Note : {k} k{} k if >

Result Poof if } { } { > } {, if / } { <

Result Poof if u} { } { > u} { if / <, < if } { >

Result 5 Poof {} d {} {.} {} d d b Theoem {x} {x} d d d {}

Result 6 Poof } { } { d d } { {x} d d {x} Theoem b } { d d } {

Result 7 Poof { } b Theoem { { {x} } {. } d d d d d d {x} {} - }

Result 8 { } { } Poof :

Result Fid the tsfom of the sequeces f d g Poof {f} { } { } { } {}

{g} { } { } { } {}

Result : Fid the tsfom Poof { } θ θ ii d i si } cos { cos si } si { cos cos } cos {,.. cos si cos si cos si cos ] si cos ][ si cos [ ] si cos [ si cos } si cos { si cos } si cos { } { } { : } {, } { d get we P I d P R Equtig i i i i i i i i i e put e e besult e e get we e put tht kow We i i i i i i i θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

Result Fid / Poof log L log x x x x... log log

Result

Result Result 5

Result 6 Result 7

Ivese -tsfoms The ivese -tsfom of X defied s - [X] x Whe X [x]. X c be expded i seies of scedig powes of -, b biomil expoetil, logithmic theoem, the coefficiet of - i the expsio gives - [X]. - [X] c be foud out b oe of the followig methods.

Methods to fid ivese -tsfom: - [X] c be foud out b oe of the followig methods. imethod-i Usig Covolutio theoem iimethod-ii UsigCuchs esidue theoem iiimethod-iii Usig Ptil Fctios method

Model I : Usig covolutio theoem. Usig covolutio theoem, fid the ivese tsfom of Solutio:. ]... [

. Usig covolutio theoem, fid the ivese tsfom of Solutio:.

. Usig covolutio theoem, fid the ivese tsfom of Solutio: b b b. b b b b b b b

b b b... b b b b b b /b b /b b b b b

. Usig covolutio theoem, fid the ivese tsfom of Solutio: / / / / / / / /

... 7 7 7

5. Usig covolutio theoem, fid the ivese tsfom of Solutio:.

... / / / /

6. Usig covolutio theoem, fid the ivese tsfom of Solutio:

Equtio becomes [... ]

6. Usig covolutio theoem, fid the ivese tsfom of Solutio:....

9 9 6 9 6 9 8 9 8. 9

7. Usig covolutio theoem, fid the ivese tsfom of Solutio:.......

.

Model II : Usig Cuch s esidue theoem B usig the theo of complex vibles, it c be show tht the ivese -tsfom is give b x πi c X. d Whee c is the closed cotou which cotis ll the isolted sigulities of X d cotiig the oigi of the -ple i the egio of covegece.

B Cuch s Residue theoem. x Sum of the esidue of X - t the isolted sigulities. Whee. Residue fo simple pole is lim [ X.. Residue o ode t the pole is ] d lim! d X

. Fid usig esidue method. Solutio: Let { f } f sum of the esidues of. t its poles. i.e. f sum of the esidues of t its poles. Poles of f. e, is the simple pole d is the pole of ode.

lim Re s lim lim! Re d d s lim d d }. { lim }. { Re Re s s f

. Fid the ivese tsfom of b esidue method. Solutio: Let { } sum of the esidues of f f. t its poles. i.e. f sum of the esidues of t its poles. Poles of f. e is the pole of ode.

lim! Re d d s } { lim! d d } { lim! d d ]. lim [! ] [ ] [ Re s f

Model III : Usig Ptil Fctios Method Whe X is tiol fuctio i which the deomito is fctoisble, X is esolved ito ptil fctios d the -[X] is deived s the sum of the ivese -tsfoms of the ptil fctios.. Fid Solutio: A B A B Put, we get A A

, B get we Put B

. Fid usig ptil fctio method. Solutio: Let f f Put A B C A B C, we get B B Put, we get C C Coeff. of, A C A A

. Fid b the method of ptil fctios. Solutio: Let f f A B C A B C Put, we get A Coeff. of, A B B 8A A B

C B of Coeff,. C C / / / f f } { f si cos π π

. Fid the ivese -tsfom of Solutio: Let f f Put A B C D A B C D Coeff. of, we get B, B A C Coeff. of, A B C D A C D A C D

A C ----- - C A - f f } { f cos π

lim Res lim 6 8 Re Re s s f

Applictios of -tsfom i Solvig Fiite Diffeece Equtios -tsfom c be pplied i solvig diffeece equtio. Usig the eltios. whee Y [ ] ] [ X m x i m ] [ ] [ Y ii Y iii ] [ ] [ Y iv

Applictios of -tsfom i Solvig Fiite Diffeece Equtios. Solve u 6u 9u with u u usig -tsfom. Solutio: Give u 6u 9u Tkig tsfom o both sides, we get u ] 6 [ u ] 9 [ u ] [ { u u u} 6{ u u} 9u { u } 6{ u } 9u

9 6 u u u u C B A C B A 5, A get we Put 5 A 5, C get we Put 5 C

B A of Coeff,. B 5 5 B 5 / 5 / 5 / u 5 5 5 u 5 5 5 } { u u u e i. 5 5. 5..

. Solve u u u with u, u usig - tsfom. Solutio: Give u u u Tkig tsfom o both sides, we get ] [ ] [ ] [ u u u } { } { u u u u u u } { } { u u u u u 6] 7 [ u

7 7 u 7 7 C B A 7 7 C B A 7 8, A get we Put A 7 7, C get we Put C B A of Coeff,. B B u u } { u u u e i..

. Solve with, usig - tsfom. Solutio: Give Tkig tsfom o both sides, we get ] [ ] [ ] [ } { } { } { } { ] [

A B C A B C Put, we get 9 6 C6 Put, we get C 8 A A 8 Coeff. of, A B C B B B 8 8 8 8 8 8 8 5

/8 5/ /8 8 5 8 } { 8 5 8 8 5 8 5 8.. e i

. Usig -tsfom solve - - give tht, -. Solutio: Chgig ito i the give equtio, it becomes, Tkig tsfom o both sides, we get ] [ ] [ ] [ } { } { } { } { 7 7

7 7 B A 7 B A 5 7, A get we Put 5 A 5 7, B get we Put 5 5B B } { e i..

5. Usig -tsfom method solve give tht. Solutio: Give Tkig tsfom o both sides, we get ] [ ] [ } { } {

C B A C B A, A get we Put A B A of Coeff,. B B C B of Coeff,. C C } { si cos.. π π e i

6. Fom the diffeece equtio whose solutio is Solutio: Give A B A B A B --------- [A B] [A B] A B -------- [A B] [A B] A B ------- Elimitig A d B fom equtios, d, we hve

[ 8 8 ] [ ] [ ] 6 8 8 8 8 i. e.

7. Deive the diffeece equtio fom A B- Solutio: Give A B- A- B- --------- [A B]- -[A B]- -A- -B- -------- [A B]- 9[A B]- 9A- 9B- ------- Elimitig A d B fom equtios, d, we hve

9 9 [ 7 7 ] [9 9] [ ] 5 7 8 7 8 i. e. 6 9