Environmental Science A Study of Interrelationships

Similar documents
Chemistry in Biology Section 1 Atoms, Elements, and Compounds

LIVING IN THE ENVIRONMENT 17 TH

Exothermic and Endothermic Reactions

Chapter Two (Chemistry of Life)

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

NCSD HIGH SCHOOL CHEMISTRY SCOPE AND SEQUENCE

The Chemical Basis of Animal Life. Chapter 2

Classification of Matter. Chapter 10 Classification of Matter

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2

Chapter 02 The Chemistry of Life

Chemical reactions. C2- Topic 5

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 2

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter:

2.1 Matter and Organic Compounds

2.1. KEY CONCEPT All living things are based on atoms and their interactions. 34 Reinforcement Unit 1 Resource Book

Chapter 03 Lecture Outline

BIOCHEMISTRY BIOCHEMISTRY INTRODUCTION ORGANIZATION? MATTER. elements into the order and appearance we now

Chapter 3.1 Chemistry of Life

UNIT 1: BIOCHEMISTRY

WESTLAKE HIGH SCHOOL BIOLOGY SUMMER ASSIGNMENT

10/4/2016. Matter, Energy, and Life

Chemistry Review. Structure of an Atom. The six most abundant elements of life. Types of chemical bonds. U n i t 2 - B i o c h e m i s t r y

The Chemistry and Energy of Life

8 th Grade Integrated Science Curriculum

Chapter 2 Basic Chemistry Outline

Every living and nonliving things is made up of matter. MATTER: anything that has mass & takes up space. What does all matter have in common?

Changes in Matter. Introduction to Chemistry

Section 1 Forming New Substances

Ms. Levasseur Biology

CHAPTER 3 ATOMS ATOMS MATTER 10/17/2016. Matter- Anything that takes up space (volume) and has mass. Atom- basic unit of matter.

Ch(3)Matter & Change. John Dalton

CHAPTER 2 SCIENCE, MATTER, ENERGY, AND SYSTEMS

APES Chapter 2 Science, Matter, Energy, and Systems

Metabolism: Energy and Enzymes. February 24 th, 2012

2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules

Chapter: Cell Processes

What can we learn about the cycling of matter from the International Space Station? How does this compare to the cycling of matter on Earth?

Observation information obtained through the senses; observation in science often involves measurement

WHAT YOU NEED TO KNOW:

Chapter 6 Chemistry in Biology

2-1 Atoms consist of protons, neutrons, and electrons

The Chemistry of Respiration and Photosynthesis

Prentice Hall Conceptual Physics (Hewitt) 2009 Correlated to: Kentucky Combined Curriculum Document Science (High School)

CHEMISTRY. 2 Types of Properties Associated with Matter. Composition of Matter. Physical: properties that do not change the identity of the substance

PLAINFIELD HIGH SCHOOL CHEMISTRY CURRICULUM

Notes: Matter and Change

Do Now. What is happening in the pictures below? How do you know? What evidence do you have to support your answer?

Chapter 8 notes. 8.1 Matter. 8.1 objectives. Earth Chemistry

Y8 Science Controlled Assessment Topics & Keywords

4 Energy and Rates of Chemical Reactions

Chapter 2 The Chemical Basis of Life

Chapter Chemical Elements Matter solid, liquid, and gas elements atoms. atomic symbol protons, neutrons, electrons. atomic mass atomic number

Chemistry Final Study Guide KEY. 3. Define physical changes. A change in any physical property of a substance, not in the substance itself.

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

1 Forming New Substances

CHAPTER 2. Environmental Systems

Four elements make up about 90% of the mass of organisms O, C, H, and N

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos

Basic Chemistry for Biology. Honors Biology

CHAPTER 6--- CHEMISTRY IN BIOLOGY. Miss Queen

Atom - the smallest unit of an element that has the properties of that element From the Greek word for indivisible

Atoms, Molecules, and Life

file:///biology Exploring Life/BiologyExploringLife04/

6 th Grade Introduction to Chemistry

Core Chemistry UNIT 1: Matter & Energy Section 1: The Law of Conservation of Mass Section 2: States of Matter & Intro to Thermodynamics

1. Your Roadmap for Success in Chapter 6

Chapter 2 Essential Chemistry for Biology

Study Guide Exam 1 BIO 301L Chinnery Spring 2013

Learning Objectives. Learning Objectives (cont.) Chapter 2: Basic Chemistry 1. Lectures by Tariq Alalwan, Ph.D.

Scientific insights: answers? When do I take action or believe? Inductive reasoning: bottom up

Atomic Structure. The center of the Atom is called the Nucleus

MATTER AND ITS PROPERTIES

Principles of Alchemy (Chemistry) by Dr Jamie Love from Merlin Science Syllabus and correlation/alignment with Standards

SC101 Physical Science A

Nature of Molecules. Chapter 2. All matter: composed of atoms

Atom - the smallest unit of an element that has the properties of that element From the Greek word for indivisible

BIOCHEMISTRY 10/9/17 CHEMISTRY OF LIFE. Elements: simplest form of a substance - cannot be broken down any further without changing what it is

Chapter 6 The Chemistry of Life

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Solids (cont.) Describe the movement of particles in a solid and the forces between them.

Water & Ocean Structure. Ch. 6

Chemistry Review Unit 5 Physical Behavior of Matter

Chapter Two Test Chemistry. 1. If an atom contains 11 protons and 12 neutrons, its atomic number is A. 1 C. 12 B. 11 D. 23

Chemical Basis of Life

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I

Integrated Science

Outline. The Nature of Molecules. Atomic Structure. Atomic Structure. All matter is composed of atoms.

Introduction. Chapter 1. The Study of Chemistry. The scientific method is a systematic approach to research

Reactants and Products

Elements, Compounds, and Mixtures. Matter: Properties and Changes

UNIT 10: Water. Essential Idea(s): Water is the medium of life. IB Assessment Statements

Section 1: What is a Chemical Reaction

Semester 1 Review Questions for Exam

Potter Name: Date: Hour: Earth Science Unit 1: Earth Science Overview, Energy and Matter

8 th Grade Science. Directed Reading Packet. Chemistry. Name: Teacher: Period:

2.1 The Nature of Matter

Chemistry Physical, Chemical, and Nuclear Changes

Name: 1. Which of the following is probably true about 300 ml of sand and 300 ml of water?

Silent Card Shuffle. Dump out the word strips onto your desk.

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the.

Transcription:

Environmental Science A Study of Interrelationships Twelfth Edition Enger & Smith Chapter 4 Interrelated Scientific Principles: Matter, Energy, and Environment Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interrelated Scientific Principles: Matter, Energy, and Environment

Outline The Nature of Science Limitations of Science Pseudoscience The Structure of Matter Energy Principles Environmental Implications of Energy Flow

The Nature of Science Science is a process used to solve problems or develop an understanding of nature that involves testing possible answers. The scientific method is a way of gaining information (facts) about the world by forming possible solutions to questions, followed by rigorous testing to determine if the proposed solutions are valid.

Basic Assumptions in Science Presumptions Specific causes exist for observed events. These causes can be identified. General rules or patterns can be used to describe observations. Repeated events probably have the same cause. Perceptions are not individualistic. Fundamental rules of nature are universal.

Elements of the Scientific Method Scientists distinguish between situations that are merely correlated (happen together) and those that are correlated and show cause-and-effect relationships. The scientific method requires a systematic search for information and continual evaluation to determine if previous ideas are still supported. Scientific ideas undergo constant reevaluation, criticism, and modification.

Elements of the Scientific Method Observation occurs when we use our senses or extensions of our senses to record an event. Scientists refer to observations as careful, thoughtful recognitions of events. Observations often lead to additional questions about the observations. The way questions are asked will determine how one goes about answering them. Exploring other sources of knowledge is the next step to gain more information.

Elements of the Scientific Method A hypothesis is a testable statement that provides a possible answer to a question, or an explanation for an observation. A good hypothesis must be logical, account for all relevant information currently available, allow prediction of related future events, and be testable. Given a choice, the simplest hypothesis with the fewest assumptions is the most desirable.

Elements of the Scientific Method An experiment is a re-creation of an event that enables an investigator to support or disprove a hypothesis. A controlled experiment divides the experiment into two groups (experimental and control) that differ by only one variable. Reproducibility is important to the scientific method. A good experiment must be able to be repeated by independent investigators to ensure a lack of bias.

Elements of the Scientific Method When broad consensus exists about an area of science, it is known as a theory or law. A theory is a widely accepted, plausible generalization about fundamental scientific concepts that explains why things happen. A scientific law is a uniform or constant fact of nature that describes what happens in nature.

Elements of the Scientific Method Communication is a central characteristic of the scientific method. An important part of the communication process involves the publication of articles in scientific journals about one s research, thoughts, and opinions. This provides other scientists with an opportunity to criticize, make suggestions, or agree.

Elements of the Scientific Method

Limitations of Science Scientists struggle with the same moral and ethical questions as other people. It is important to differentiate between data collected during an investigation, and scientists opinions of what the data mean. Scientific knowledge can be used to support both valid and invalid conclusions. Pseudoscience is a deceptive practice that uses the appearance or language of science to convince, confuse, or mislead people into thinking that something has scientific validity when it does not.

The Structure of Matter Matter is anything that has mass and takes up space. The kinetic molecular theory describes the structure and activity of matter. It states that all matter is made up of one or more kinds of smaller sub-units (atoms) that are in constant motion.

Atomic Structure The atom is the fundamental unit of matter. There are 92 types of atoms found in nature, with each being composed of: Protons (Positively charged) Neutrons (Neutral) Electrons (Negatively charged) Each kind of atom forms a specific type of matter known as an element.

Diagrammatic oxygen atom. Atomic Structure

Atomic Structure All atoms of the same element have the same number of protons and electrons, but may vary in the number of neutrons. Isotopes are atoms of the same element that differ from one another in the number of neutrons they contain.

Isotopes of hydrogen Atomic Structure

The Molecular Nature of Matter Molecules are atoms bonded together into stable units. Ions are electrically charged particles. Atoms that lose electrons = positively charged Atoms that gain electrons = negatively charged

The Molecular Nature of Matter Compounds are formed when two or more atoms or ions bind to one another. Water (H 2 O) Table sugar (C 6 H 12 O 6 ) Mixtures are variable combinations of atoms, ions, or molecules. Honey (several sugars + water) Concrete (cement, sand, and gravel) Air (various gases including nitrogen and oxygen)

A Word About Water Water can exist in 3 phases: solid, liquid, and gas. ¾ of the Earth s surface is covered with water. Water determines the weather and climate of a region, and the flow of water and ice shape the Earth s surface. The most common molecule found in living things is water.

A Word About Water Water molecules are polar with positive and negative ends. Unlike charges attract and water molecules tend to stick together. Much energy is needed to separate water molecules and convert liquid water to vapor. Thus, evaporation of water cools its surroundings. Water is the universal solvent. Most things dissolve to some degree in it.

Acids, Bases, and ph An acid is any compound that releases hydrogen ions in a solution. A base is any compound that accepts hydrogen ions in a solution. The concentration of an acid or base solution is given by a number called its ph. The ph scale measures hydrogen ion concentration. The scale is inverse and logarithmic 7 = neutral 0-6 = acidic (fewer OH - than H + ) 8-14 = basic (more OH - than H + )

The ph scale. Acids, Bases, and ph

Inorganic and Organic Matter Organic matter consists of molecules that contain carbon atoms that are usually bonded to form rings or chains. All living things contain molecules of organic compounds. Typically, chemical bonds in organic molecules contain a large amount of chemical energy that can be released when the bonds are broken.

Chemical Reactions Chemical bonds are attractive forces between atoms resulting from the interaction of their electrons. When chemical bonds are formed or broken, a chemical reaction occurs. In exothermic reactions, chemical bonds in the new compounds contain less chemical energy than the previous compounds. In endothermic reactions, the newly formed chemical bonds contain more energy than the previous compounds.

Water molecule Chemical Reactions

A chemical reaction. Chemical Reactions

Chemical Reactions Activation energy is the initial input of energy required to start a reaction. A catalyst is a substance that alters the rate of reaction, without being consumed or altered itself in the process. Catalysts can reduce activation energy. A catalytic converter in an automobile brings about more complete burning of fuel, resulting in less air pollution.

Chemical Reactions in Living Things Living organisms contain enzymes that reduce the activation energy needed to start reactions. Photosynthesis is a process used by plants to convert inorganic material into organic material using light. Carbon dioxide + water (in the presence of sunlight) produces glucose + oxygen. 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2

Chemical Reactions in Living Things Photosynthesis

Chemical Reactions in Living Things Respiration is the process that uses oxygen to break down large, organic molecules into smaller inorganic molecules (releases energy organisms can use). Glucose + oxygen produces carbon dioxide + water + energy C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy

Respiration Chemical Reactions in Living Things

Energy Principles Energy is the ability to perform work. Work is done when an object is moved over a distance. Kinetic energy is the energy contained by moving objects. Potential energy is energy due to relative position.

States of Matter The state of matter depends on the amount of energy present. The amount of kinetic energy contained in a molecule determines how rapidly it moves. Solids: Molecular particles have low energy and vibrate in place very close to one another. Liquids: More energy; molecules are farther apart from one another. Gases: Molecular particles move very rapidly and are very far apart.

States of matter Energy Principles

States of Matter Sensible heat transfer occurs when heat energy flows from a warmer object to a cooler object. The temperature of cooler matter increases and the temperature of warmer matter decreases. Latent heat transfer occurs when heat energy is used to change the state of matter, but the temperature of matter does not change.

First and Second Laws of Thermodynamics Energy can be converted from one form to another, but the amount remains constant. 1st Law: Energy cannot be created or destroyed; it can only be changed from one form to another. 2nd Law: When converting energy from one form to another, some of the useful energy is lost. Entropy is the energy that cannot be used to do useful work.

First and Second Laws of Thermodynamics Second law of thermodynamics

Environmental Implications of Energy Flow Heat produced during energy conversion is dissipated into the environment. Chemical reactions Friction between moving objects Orderly arrangements of matter tend to become disordered. The process of becoming disordered coincides with the constant flow of energy toward a dilute form of heat. This results in an increase in entropy.

Environmental Implications of Energy Flow Some forms of energy are more useful than others. High quality: Can be used to perform useful work (electricity). Low quality: Cannot be used to perform useful work (heat in the ocean). Temperature differential between two objects means that heat will flow from the warmer object to the cooler object. The greater the temperature differential, the more useful work can be done.

Environmental Implications of Energy Flow Low-quality energy still has significance in the world. The distribution of heat energy in the ocean moderates the temperature of coastal climates. It contributes to weather patterns and causes ocean currents that are important in many ways. We can sometimes figure new ways to convert lowquality energy to high-quality energy. Improvements in wind turbines and photovoltaic cells allow us to convert low-quality light and wind to electricity.

Biological Systems and Thermodynamics In accordance with the second law of thermodynamics, all organisms, including humans, are in the process of converting highquality energy into low-quality energy. When chemical-bond energy in food is converted into the energy needed to move, grow, or respond, waste heat is produced. From an energy point of view, it is comparable to the process of combustion.

Pollution and Thermodynamics A consequence of energy conversion is pollution. Wearing of brakes used to stop cars. Emissions from power plants. If each person on Earth used less energy, there would be less waste heat and other forms of pollution that result from energy conversion. The amount of energy in the universe is limited, and only a small portion of that energy is highquality.

Summary Science is a method of gathering and organizing information. A hypothesis is a logical prediction about how things work that must account for all the known information and be testable. If a hypothesis is continually supported by the addition of new facts, it may be incorporated into a theory. A law is a broad statement that describes what happens in nature.

Summary The fundamental unit of matter is the atom, which is made up of protons and neutrons in the nucleus surrounded by a cloud of moving electrons. Chemical bonds are physical attractions between atoms resulting from the interaction of their electrons. When chemical bonds are broken or formed, a chemical reaction occurs, and the amount of energy within the chemical bonds is changed.

Summary Matter can occur in three states: solid, liquid, and gas. Kinetic energy is the energy contained by moving objects; potential energy is the energy an object has because of its position. The first law of thermodynamics states that the amount of energy in the universe is constant. The second law of thermodynamics states that when energy is converted from one form to another, some of the useful energy is lost.