J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

Similar documents
J{UV 65/2. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

CBSE QUESTION PAPER. MATHEMATICS,(1)1d

J{UV 65/1/C. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/2 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/C H$moS> Z. 65/1

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/3

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/3 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/1

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

CBSE Question Paper. Mathematics Class-XII (set-1)

J{UV 65/1/RU. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/1 Code No.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

30/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

J{UV (Ho$db ZoÌhrZ narjm{w `m Ho$ {be) MATHEMATICS. g H${bV narjm II SUMMATIVE ASSESSMENT II. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

MT-03 June - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

EMT December - Examination 2017 BAP Examination Elementary Mathematics Paper - EMT

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

MT-03 December - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry & Linear Programming Paper - MT-03

SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

CBSE QUESTION PAPER CLASS-X

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

J{UV 65/2/1/F. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO/2

BMT June - Examination 2017 BSCP Examination Mathematics J{UV. Paper - BMT. Time : 3 Hours ] [ Max. Marks :- 80

PH-02 June - Examination 2017 B.Sc. Pt. I Examination Oscillation and Waves. Paper - PH-02. Time : 3 Hours ] [ Max. Marks :- 50

Set 1 30/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõmýv

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

MPH-03 June - Examination 2016 M.Sc. (Previous) Physics Examination Quantum Mechanics. Paper - MPH-03. Time : 3 Hours ] [ Max.

PH-03 December - Examination 2016 B.Sc. Pt. I Examination Electromagnetism. Paper - PH-03. Time : 3 Hours ] [ Max. Marks :- 50

Set 3 30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

MSCPH-03 June - Examination 2017 MSC (Previous) Physics Examination Solid State Physics. Paper - MSCPH-03. Time : 3 Hours ] [ Max.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS


{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

SET-I SECTION A SECTION B. General Instructions. Time : 3 hours Max. Marks : 100

Time allowed: 3 hours Maximum Marks: 90

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

PH-06 June - Examination 2016 BSc Pt. II Examination Optics. àh$m{eh$s. Paper - PH-06. Time : 3 Hours ] [ Max. Marks :- 50

MSCCH - 09 December - Examination 2015 M.Sc. Chemistry (Final) Examination Drugs and Pharmaceuticals Paper - MSCCH - 09

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõm V

II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{ZX}e : h àíz-nì "A', "~' VWm "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm H$m CÎma Xr{OE&

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

àoau à^md {H$go H$hVo h?

J{UVr ^m {VH$s VWm {Magå V m {ÌH$s

J{UV 65/1/MT. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV MATHEMATICS. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90 IÊS> A SECTION A

agm`z {dkmz (g ÕmpÝVH$) 56/1/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/3 Code No.

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/2 Code No.

This ques tion pa per con sists of 32 ques tions [Sec tion A (24) + Sec tion B (4+4)] and 12 printed pages. MATHEMATICS J{UV (311) 2...

agm`z {dkmz (g ÕmpÝVH$) 56/1/MT {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

MATHEMATICS. Time allowed : 3 hours Maximum Marks : 100

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/1

Series HRS/2 H$moS> Z. 31/2/2 Code No.

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/C. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Downloaded From:

J{UV (311) (narjm H$m {XZ d {XZmßH$) Signature of Invigilators 1... ({ZarjH$m Ho$ hòvmja) Bg ÌZ-nà nwpòvh$m Ho$ A VJ V 23 _w{ V n apple> h ü&

Downloaded from SET-1

agm`z {dkmz (g ÕmpÝVH$) 56/1/P {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/P {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

Bg narjm _ {ZåZ{b{IV àíznì hm Jo

gm_mý` {ZX}e : àízm Ho$ CÎma {bizo h & (ii) g^r àíz A{Zdm` h & (iii) AmnH$mo ^mj A Am a ^mj ~ Ho$ g^r àízm Ho$ CÎma n WH²$-n WH²$ ^mj Ho$ AmYma na

MATHEMATICS (SET -3) Labour cost Z 300x 400y (to be minimized) The constraints are: SECTION - A 1. f (x) is continuous at x 3 f (3) lim f (x)

agm`z {dkmz (g ÕmpÝVH$) 56/2 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

agm`z {dkmz (g ÕmpÝVH$) 56/2/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM/2

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/C H$moS> Z. 56/1

agm`z {dkmz (g ÕmpÝVH$) 56/3 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/2 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

{dîm Am a à~ YZ na {díbofumë_h$

Time allowed : 3 hours Maximum Marks : 100

II SUMMATIVE ASSESSMENT II

g[ Û œ t Æ *W Bg Am ZbmBZ narjm _ {ZåZmZwgma dñvw{zð> àh$ma H$s ~hþ{dh$ën àízmd{b`m hm Jr :

Series HRS H$moS> Z. 31/3 Code No. g H${bV narjm II SUMMATIVE ASSESSMENT II {dkmz SCIENCE

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM

MINIMUM PROGRAMME FOR AISSCE

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/G. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/3/RU {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 55/2/1 Code No.

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 42/3 (SPL) Code No.

CBSE MATHS 2010 YEAR PAPER

g[ Û œ t Æ *W 60 {_ZQ>

agm`z {dkmz (g ÕmpÝVH$) 56/1/B {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

MODEL PAPER - I MATHEMATICS. Time allowed : 3 hours Maximum marks : 100

Transcription:

Series GBM amob Z. Roll No. H$moS> Z. Code No. SET- 65/ narjmwu H$moS >H$mo CÎma-nwpñVH$m Ho$ _wi-n ð >na Adí` {bio & Candidates must write the Code on the title page of the answer-book. H $n`m Om±M H$a b {H$ Bg àíz-nì _o _w{ðv n ð> h & àíz-nì _ Xm{hZo hmw H$s Amoa {XE JE H$moS >Zå~a H$mo N>mÌ CÎma-nwpñVH$m Ho$ _wi-n ð> na {bi & H $n`m Om±M H$a b {H$ Bg àíz-nì _ >9 àíz h & H $n`m àíz H$m CÎma {bizm ewê$ H$aZo go nhbo, àíz H$m H«$_m H$ Adí` {bi & Bg àíz-nì H$mo n T>Zo Ho$ {be 5 {_ZQ >H$m g_` {X`m J`m h & àíz-nì H$m {dvau nydm _ 0.5 ~Oo {H$`m OmEJm & 0.5 ~Oo go 0.0 ~Oo VH$ N>mÌ Ho$db àíz-nì H$mo n T> Jo Am a Bg Ad{Y Ho$ Xm amz do CÎma-nwpñVH$m na H$moB CÎma Zht {bi Jo & Please check that this question paper contains printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. Please check that this question paper contains 9 questions. Please write down the Serial Number of the question before attempting it. 5 minute time has been allotted to read this question paper. The question paper will be distributed at 0.5 a.m. From 0.5 a.m. to 0.0 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. J{UV MATHEMATICS {ZYm [av g_` : KÊQ>o A{YH$V_ A H$ : 00 Time allowed : hours Maimum Marks : 00 65/ P.T.O.

gm_mý` {ZX}e : (i) (ii) (iii) (iv) (v) g^r àíz A{Zdm` h & Bg àíz nì _ 9 àíz h Omo Mma IÊS>m _ {d^m{ov h : A, ~, g VWm X & IÊS> A _ àíz h {OZ_ go àë`oh$ EH$ A H$ H$m h & IÊS> ~ _ 8 àíz h {OZ_ go àë`oh$ Xmo A H$ H$m h & IÊS> g _ àíz h {OZ_ go àë`oh$ Mma A H$ H$m h & IÊS> X _ 6 àíz h {OZ_ go àë`oh$ N>: A H$ H$m h & IÊS> A _ g^r àízm Ho$ CÎma EH$ eãx, EH$ dmš` AWdm àíz H$s Amdí`H$VmZwgma {XE Om gh$vo h & nyu àíz nì _ {dh$ën Zht h & {\$a ^r Mma A H$m dmbo àízm _ VWm N> A H$m dmbo àízm _ AmÝV[aH$ {dh$ën h & Eogo g^r àízm _ go AmnH$mo EH$ hr {dh$ën hb H$aZm h & H $bhw$boq>a Ho$ à`moj H$s AZw_{V Zht h & `{X Amdí`H$ hmo, Vmo Amn bkwjuh$s` gma{u`m± _m±j gh$vo h & General Instructions : (i) All questions are compulsory. (ii) The question paper consists of 9 questions divided into four sections A, B, C and D. Section A comprises of questions of one mark each, Section B comprises of 8 questions of two marks each, Section C comprises of questions of four marks each and Section D comprises of 6 questions of si marks each. (iii) (iv) (v) All questions in Section A are to be answered in one word, one sentence or as per the eact requirement of the question. There is no overall choice. However, internal choice has been provided in questions of four marks each and questions of si marks each. You have to attempt only one of the alternatives in all such questions. Use of calculators is not permitted. You may ask for logarithmic tables, if required. 65/

IÊS> A SECTION A àíz g»`m go VH$ àë`oh$ àíz A H$ H$m h & Question numbers to carry mark each.. k H$m _mz kmv H$s{OE {OgHo$ {be {ZåZ{b{IV \$bz = na g VV h : f() = ( ) 6 k,, Determine the value of k for which the following function is continuous at = : f() = ( ) 6 k,,. `{X {H$gr dj Amì`yh A Ho$ {be, A(adj A) = {b{ie & 8 0 0 8 h, Vmo A H$m _mz If for any square matri A, A(adj A) = of A. 8 0 0, then write the value 8 65/ P.T.O.

. g_vbm y + z = 5 VWm 5. 5y + 5z = 0 Ho$ ~rm H$s Xÿar kmv H$s{OE & Find the distance between the planes y + z = 5 and 5. 5y + 5z = 0.. kmv H$s{OE : sin cos sin cos d Find : sin cos sin cos d IÊS> ~ SECTION B àíz g»`m 5 go VH$ àë`oh$ àíz Ho$ A H$ h & Question numbers 5 to carry marks each. 5. kmv H$s{OE : d 5 8 Find : d 5 8 6. Xmo XOu, A VWm B, à{v{xz H«$_e: < 00 VWm < 00 H$_mVo h & A EH$ {XZ _ 6 H$_rµO VWm n Q> {gb gh$vm h O~{H$ B à{v{xz 0 H$_rµOo VWm n Q>o {gb gh$vm h & `h kmv H$aZo Ho$ {be {H$ H$_-go-H$_ 60 H$_rµO o VWm n Q> {gbzo Ho$ {be àë`oh$ {H$VZo {XZ H$m` H$ao {H$ l_ bmjv H$_-go-H$_ hmo, a {IH$ àmoj«m_z g_ñ`m Ho$ ê$n _ gyì~õ H$s{OE & Two tailors, A and B, earn < 00 and < 00 per day respectively. A can stitch 6 shirts and pairs of trousers while B can stitch 0 shirts and pairs of trousers per day. To find how many days should each of them work and if it is desired to produce at least 60 shirts and pairs of trousers at a minimum labour cost, formulate this as an LPP. 65/

7. EH$ nmgm, {OgHo$ \$bh$m na A H$,, bmb a J _ {bio h VWm, 5, 6 hao a J _ {bio h, H$mo CN>mbm J`m & _mzm KQ>Zm A h : àmßv g»`m g_ h VWm KQ>Zm B h : àmßv g»`m bmb h & kmv H$s{OE {H$ Š`m A VWm B ñdv Ì KQ>ZmE± h & A die, whose faces are marked,, in red and, 5, 6 in green, is tossed. Let A be the event number obtained is even and B be the event number obtained is red. Find if A and B are independent events. 8. q~xþam P(,, ) VWm Q(5,, ) H$mo {_bmzo dmbr aoim na pñwv EH$ q~xþ H$m -{ZX}em H$ h & CgH$m z-{zx}em H$$kmV H$s{OE & The -coordinate of a point on the line joining the points P(,, ) and Q(5,, ) is. Find its z-coordinate. 9. Xem BE {H$ \$bz f() = + 6 00, na dy _mz h & Show that the function f() = + 6 00 is increasing on. 0. \$bz f() =, [, 0] Ho$ {be amobo Ho$ à_o` Ho$ à`moj go c H$m _mz kmv H$s{OE & Find the value of c in Rolle s theorem for the function f() = in [, 0].. `{X A H$mo{Q> H$m EH$ {df_-g_{_v Amì`yh h, Vmo {gõ H$s{OE {H$ det A = 0. If A is a skew-symmetric matri of order, then prove that det A = 0.. EH$ Jmobo H$m Am`VZ 8 KZ go_r/go. H$s Xa go ~ T> ahm h & BgHo$ n ð>r` joì\$b Ho$ ~ T>Zo H$s Xa kmv H$s{OE O~{H$ Jmobo H$s {ÌÁ`m go_r h & The volume of a sphere is increasing at the rate of 8 cm /s. Find the rate at which its surface area is increasing when the radius of the sphere is cm. 65/ 5 P.T.O.

IÊS> g SECTION C àíz g»`m go VH$ àë`oh$ àíz Ho$ A H$ h & Question numbers to carry marks each.. H$mS> h {OZ na g»`me±,, 5 VWm 7 A {H$V h, EH$ H$mS> na EH$ g»`m & Xmo H$mS> à{vñwmnzm {H$E {~Zm `mñàn>`m {ZH$mbo JE & _mzm X {ZH$mbo JE Xmo H$mS>m] na {bir g»`mam H$m `moj\$b h & X H$m _mü` VWm àgau kmv H$s{OE & There are cards numbered,, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.. Xem BE {H$ q~xþ A, B, C {OZHo$ pñw{v g{xe H«$_e: ^i ^j + ^k, ^i ^j 5^k VWm ^i ^j ^k h, EH$ g_h$mou {Ì^wO Ho$ erf h & AV: {Ì^wO H$m joì\$b kmv H$s{OE & Show that the points A, B, C with position vectors ^i ^j + ^k, ^i ^j 5^k and ^i ^j ^k respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle. 5. EH$ {dúmb` Ho$ {dúm{w `m Ho$ {be kmv h {H$ 0% {dúm{w `m H$s 00% CnpñW{V h VWm 70% {dúmwu A{Z`{_V h & {nn>bo df Ho$ n[aum_ gy{mv H$aVo h {H$ CZ g^r {dúm{w `m, {OZH$s CnpñW{V 00% h, _ go 70% Zo dm{f H$ narjm _ A J«oS> nm`m VWm A{Z`{_V {dúm{w `m _ go 0% Zo A J«oS> nm`m & df Ho$ A V _, {dúmb` _ go EH$ {dúmwu `mñàn>`m MwZm J`m VWm `h nm`m J`m {H$ CgH$m A J«oS> Wm & àm{`h$vm Š`m h {H$ Cg {dúmwu H$s 00% CnpñW{V h? Š`m {Z`{_VVm Ho$db {dúmb` _ Amdí`H$ h? AnZo CÎma Ho$ nj _ VH $ Xr{OE & Of the students in a school, it is known that 0% have 00% attendance and 70% students are irregular. Previous year results report that 70% of all students who have 00% attendance attain A grade and 0% irregular students attain A grade in their annual eamination. At the end of the year, one student is chosen at random from the school and he was found to have an A grade. What is the probability that the student has 00% attendance? Is regularity required only in school? Justify your answer. 65/ 6

65/ 7 P.T.O. 6. `{X tan tan h, Vmo H$m _mz kmv H$s{OE & If tan tan, then find the value of. 7. gma{uh$m Ho$ JwUY_m] H$m à`moj H$a, {gõ H$s{OE {H$ ) (a a a a a a AWdm Amì`yh A kmv H$s{OE {H$ 9 8 A 0 Using properties of determinants, prove that ) (a a a a a a OR Find matri A such that 9 8 A 0

8. `{X y + y = a b h, Vmo dy kmv H$s{OE & d AWdm `{X e y ( + ) = h, Vmo Xem BE {H$ If y + y = a b dy, then find. d d d y dy. d OR If e y ( + ) =, then show that 9. _mz kmv H$s{OE : d d y dy. d 0 _mz kmv H$s{OE : tan sec tan AWdm d d Evaluate : tan sec tan 0 OR d Evaluate : d 65/ 8

0. {ZåZ{b{IV a {IH$ àmoj«m_z g_ñ`m H$m AmboI Ûmam hb kmv H$s{OE : Z = 7 + 0y H$m A{YH$V_rH$aU H$s{OE {ZåZ{b{IV AdamoYm Ho$ A VJ V + 6y 0 6 + y 0 0 0, y 0 Solve the following linear programming problem graphically : Maimise Z = 7 + 0y subject to the constraints + 6y 0 6 + y 0 0. kmv H$s{OE : Find : 0, y 0 (e (e. `{X b = b + e d ) (e ) e d ) (e ) a = ^i ^j ^k VWm b = 7^i + ^j ^k h, Vmo b H$mo b Ho$ ê$n _ A{^ì`º$ H$s{OE, Ohm± b, a Ho$ g_m Va h Am a Ho$ b ~dv² h & b, a If a = ^i ^j ^k and b = 7^i + ^j ^k, then epress b in the form of b = b + b, where b is parallel to a and b is perpendicular to a. dy. AdH$b g_rh$au y = sin H$m ì`mnh$ hb kmv H$s{OE & d Find the general solution of the differential equation dy y = sin. d 65/ 9 P.T.O.

IÊS> X SECTION D àíz g»`m go 9 VH$ àë`oh$ àíz Ho$ 6 A H$ h & Question numbers to 9 carry 6 marks each.. g_mh$bz {d{y Ho$ à`moj go Cg {Ì^wO ABC H$m joì\$b kmv H$s{OE {OgHo$ erfm] Ho$ {ZX}em H$ A (, ), B (6, 6) VWm C (8, ) h & AWdm gab aoim y + = 0 VWm nadb` y = Ho$ ~rm {Kao joì H$m joì\$b kmv H$s{OE & Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (, ), B (6, 6) and C (8, ). OR Find the area enclosed between the parabola y = and the straight line y + = 0. dy 5. AdH$b g_rh$au ( y) = ( + y) H$m {d{eîq> hb kmv H$s{OE, {X`m J`m h {H$ d y = 0 O~ = h & Find the particular solution of the differential equation dy ( y) = ( + y), given that y = 0 when =. d 6. Cg q~xþ Ho$ {ZX}em H$ kmv H$s{OE Ohm± q~xþam (,, 5) VWm (,, ) go hmoh$a OmVr aoim, q~xþam (,, ), (,, ) VWm (0,, ) Ûmam ~Zo g_vb H$mo H$mQ>Vr h & AWdm EH$ Ma g_vb, Omo _yb-q~xþ go p H$s AMa Xÿar na pñwv h, {ZX}em H$ Ajm H$mo A, B, C na H$mQ>Vm h & Xem BE {H$ {Ì^wO ABC Ho$ Ho$ÝÐH$ H$m q~xþnw h & y z p 65/ 0

Find the coordinates of the point where the line through the points (,, 5) and (,, ), crosses the plane determined by the points (,, ), (,, ) and (0,, ). OR A variable plane which remains at a constant distance p from the origin cuts the coordinate aes at A, B, C. Show that the locus of the centroid of triangle ABC is. y z p 7. f : R, Omo f() = Ûmam àxîm h, na {dmma H$s{OE & Xem BE {H$ f EH $H$s VWm AmÀN>mXH$ h & f H$m à{vbmo_ \$bz kmv H$s{OE & AV: f (0) kmv H$s{OE VWm kmv H$s{OE Vm{H$ f () =. AWdm _mzm A = VWm * A na EH$ {ÛAmYmar g {H«$`m h Omo (a, b) * (c, d) = (ac, b + ad) Ûmam n[a^m{fv h, g^r (a, b), (c, d) A Ho$ {be & kmv H$s{OE {H$ Š`m * H«$_{d{Z_o` VWm ghmmar h & V~, A na * Ho$ gmnoj (i) (ii) A _ VËg_H$ Ad`d kmv H$s{OE & A Ho$ ì`wëh«$_ur` Ad`d kmv H$s{OE & Consider f : R given by f() =. Show that f is bijective. Find the inverse of f and hence find f (0) and such that f () =. OR Let A = and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) A. Determine, whether * is 65/ P.T.O. commutative and associative. Then, with respect to * on A (i) Find the identity element in A. (ii) Find the invertible elements of A.

8. `{X A = 5 h, Vmo A kmv H$s{OE, AV: a {IH$ g_rh$au {ZH$m` y + 5z =, + y z = 5 VWm + y z = H$mo hb H$s{OE & 5 If A =, then find A and hence solve the system of linear equations y + 5z =, + y z = 5 and + y z =. 9. {H$gr Am`V Ho$ D$na ~Zo AY d Îm Ho$ AmH$ma dmbr EH$ {I S>H$s h & {I S>H$s H$m g nyu n[a_mn 0 _r. h & nyu V`m Iwbr {I S>H$s go A{YH$V_ àh$me AmZo Ho$ {be, {I S>H$s H$s {d_me± kmv H$s{OE & A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 0 m. Find the dimensions of the window to admit maimum light through the whole opening. 65/