J{UV 65/2. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

Similar documents
CBSE QUESTION PAPER. MATHEMATICS,(1)1d

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV 65/1/C. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/C H$moS> Z. 65/1

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/3

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/2 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/3 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/1

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

CBSE Question Paper. Mathematics Class-XII (set-1)

J{UV 65/1/RU. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/1 Code No.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

EMT December - Examination 2017 BAP Examination Elementary Mathematics Paper - EMT

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

J{UV (Ho$db ZoÌhrZ narjm{w `m Ho$ {be) MATHEMATICS. g H${bV narjm II SUMMATIVE ASSESSMENT II. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

30/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

MT-03 June - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

MT-03 December - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry & Linear Programming Paper - MT-03

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

CBSE QUESTION PAPER CLASS-X

J{UV 65/2/1/F. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO/2

MPH-03 June - Examination 2016 M.Sc. (Previous) Physics Examination Quantum Mechanics. Paper - MPH-03. Time : 3 Hours ] [ Max.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

PH-02 June - Examination 2017 B.Sc. Pt. I Examination Oscillation and Waves. Paper - PH-02. Time : 3 Hours ] [ Max. Marks :- 50

MSCPH-03 June - Examination 2017 MSC (Previous) Physics Examination Solid State Physics. Paper - MSCPH-03. Time : 3 Hours ] [ Max.

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõmýv

BMT June - Examination 2017 BSCP Examination Mathematics J{UV. Paper - BMT. Time : 3 Hours ] [ Max. Marks :- 80

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

PH-03 December - Examination 2016 B.Sc. Pt. I Examination Electromagnetism. Paper - PH-03. Time : 3 Hours ] [ Max. Marks :- 50

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

Set 1 30/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

Set 3 30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr


MSCCH - 09 December - Examination 2015 M.Sc. Chemistry (Final) Examination Drugs and Pharmaceuticals Paper - MSCCH - 09

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

PH-06 June - Examination 2016 BSc Pt. II Examination Optics. àh$m{eh$s. Paper - PH-06. Time : 3 Hours ] [ Max. Marks :- 50

Time allowed: 3 hours Maximum Marks: 90

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõm V

II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

J{UVr ^m {VH$s VWm {Magå V m {ÌH$s

àoau à^md {H$go H$hVo h?

{ZX}e : h àíz-nì "A', "~' VWm "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm H$m CÎma Xr{OE&

J{UV 65/1/MT. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

SET-I SECTION A SECTION B. General Instructions. Time : 3 hours Max. Marks : 100

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/3 Code No.

agm`z {dkmz (g ÕmpÝVH$) 56/1/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/2 Code No.

This ques tion pa per con sists of 32 ques tions [Sec tion A (24) + Sec tion B (4+4)] and 12 printed pages. MATHEMATICS J{UV (311) 2...

J{UV MATHEMATICS. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90 IÊS> A SECTION A

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/1

agm`z {dkmz (g ÕmpÝVH$) 56/1/MT {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

Bg narjm _ {ZåZ{b{IV àíznì hm Jo

J{UV (311) (narjm H$m {XZ d {XZmßH$) Signature of Invigilators 1... ({ZarjH$m Ho$ hòvmja) Bg ÌZ-nà nwpòvh$m Ho$ A VJ V 23 _w{ V n apple> h ü&

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/C. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Downloaded From:

Series HRS/2 H$moS> Z. 31/2/2 Code No.

agm`z {dkmz (g ÕmpÝVH$) 56/2 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

g[ Û œ t Æ *W Bg Am ZbmBZ narjm _ {ZåZmZwgma dñvw{zð> àh$ma H$s ~hþ{dh$ën àízmd{b`m hm Jr :

Downloaded from SET-1

{dîm Am a à~ YZ na {díbofumë_h$

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM

II SUMMATIVE ASSESSMENT II

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/C H$moS> Z. 56/1

agm`z {dkmz (g ÕmpÝVH$) 56/3 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/2 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/1/P {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/P {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

g[ Û œ t Æ *W 60 {_ZQ>

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 42/3 (SPL) Code No.

agm`z {dkmz (g ÕmpÝVH$) 56/2/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM/2

gm_mý` {ZX}e : àízm Ho$ CÎma {bizo h & (ii) g^r àíz A{Zdm` h & (iii) AmnH$mo ^mj A Am a ^mj ~ Ho$ g^r àízm Ho$ CÎma n WH²$-n WH²$ ^mj Ho$ AmYma na

agm`z {dkmz (g ÕmpÝVH$) 56/3/RU {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/G. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/MT. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

{X Ý`y BpÝS>`m Eí`moaÝg H $nzr {b{_q>os>

ASSIGNMENT-1 M.A. DEGREE EXAMINATION, MAY (Second Year) HINDI Linguistics and History of Hindi Language

~ H $ A m \ $ B { S > ` m

agm`z {dkmz (g ÕmpÝVH$) 56/1/B {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 55/2/1 Code No.

g[ Û œ t Æ *W *Aä`Wu Ûmam {H$gr ^r àízmdbr _ àmßv A H$m H$mo g^r \$m _m] Ho$ A H$m Ho$ {dvau na {dmma H$aVo hþe ~og \$m _ go g_rh $V {H$`m OmVm h Ÿ&

Transcription:

Series GBM amob Z. Roll No. H$moS> Z. Code No. SET- 65/ narjmwu H$moS >H$mo CÎma-nwpñVH$m Ho$ _wi-n ð >na Adí` {bio & Candidates must write the Code on the title page of the answer-book. H $n`m Om±M H$a b {H$ Bg àíz-nì _o _w{ðv n ð> h & àíz-nì _ Xm{hZo hmw H$s Amoa {XE JE H$moS >Zå~a H$mo N>mÌ CÎma-nwpñVH$m Ho$ _wi-n ð> na {bi & H $n`m Om±M H$a b {H$ Bg àíz-nì _ >9 àíz h & H $n`m àíz H$m CÎma {bizm ewê$ H$aZo go nhbo, àíz H$m H«$_m H$ Adí` {bi & Bg àíz-nì H$mo n T>Zo Ho$ {be 5 {_ZQ >H$m g_` {X`m J`m h & àíz-nì H$m {dvau nydm _ 0.5 ~Oo {H$`m OmEJm & 0.5 ~Oo go 0.0 ~Oo VH$ N>mÌ Ho$db àíz-nì H$mo n T> Jo Am a Bg Ad{Y Ho$ Xm amz do CÎma-nwpñVH$m na H$moB CÎma Zht {bi Jo & Please check that this question paper contains printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. Please check that this question paper contains 9 questions. Please write down the Serial Number of the question before attempting it. 5 minute time has been allotted to read this question paper. The question paper will be distributed at 0.5 a.m. From 0.5 a.m. to 0.0 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. J{UV MATHEMATICS {ZYm [av g_` : KÊQ>o A{YH$V_ A H$ : 00 Time allowed : hours Maximum Marks : 00 65/ P.T.O.

gm_mý` {ZX}e : (i) (ii) (iii) (iv) (v) g^r àíz A{Zdm` h & Bg àíz nì _ 9 àíz h Omo Mma IÊS>m _ {d^m{ov h : A, ~, g VWm X & IÊS> A _ àíz h {OZ_ go àë`oh$ EH$ A H$ H$m h & IÊS> ~ _ 8 àíz h {OZ_ go àë`oh$ Xmo A H$ H$m h & IÊS> g _ àíz h {OZ_ go àë`oh$ Mma A H$ H$m h & IÊS> X _ 6 àíz h {OZ_ go àë`oh$ N>: A H$ H$m h & IÊS> A _ g^r àízm Ho$ CÎma EH$ eãx, EH$ dmš` AWdm àíz H$s Amdí`H$VmZwgma {XE Om gh$vo h & nyu àíz nì _ {dh$ën Zht h & {\$a ^r Mma A H$m dmbo àízm _ VWm N> A H$m dmbo àízm _ AmÝV[aH$ {dh$ën h & Eogo g^r àízm _ go AmnH$mo EH$ hr {dh$ën hb H$aZm h & H $bhw$boq>a Ho$ à`moj H$s AZw_{V Zht h & `{X Amdí`H$ hmo, Vmo Amn bkwjuh$s` gma{u`m± _m±j gh$vo h & General Instructions : (i) All questions are compulsory. (ii) The question paper consists of 9 questions divided into four sections A, B, C and D. Section A comprises of questions of one mark each, Section B comprises of 8 questions of two marks each, Section C comprises of questions of four marks each and Section D comprises of 6 questions of six marks each. (iii) (iv) (v) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question. There is no overall choice. However, internal choice has been provided in questions of four marks each and questions of six marks each. You have to attempt only one of the alternatives in all such questions. Use of calculators is not permitted. You may ask for logarithmic tables, if required. 65/

IÊS> A SECTION A àíz g»`m go VH$ àë`oh$ àíz A H$ H$m h & Question numbers to carry mark each.. kmv H$s{OE : sin x cos x sin x cos x Find : sin x cos x sin x cos x. g_vbm x y + z = 5 VWm 5x. 5y + 5z = 0 Ho$ ~rm H$s Xÿar kmv H$s{OE & Find the distance between the planes x y + z = 5 and 5x. 5y + 5z = 0.. `{X {H$gr dj Amì`yh A Ho$ {be, A(adj A) = {b{ie & 8 0 0 8 h, Vmo A H$m _mz If for any square matrix A, A(adj A) = of A. 8 0 0, then write the value 8 65/ P.T.O.

. k H$m _mz kmv H$s{OE {OgHo$ {be {ZåZ{b{IV \$bz x = na g VV h : f(x) = (x ) 6 x k,, x x Determine the value of k for which the following function is continuous at x = : (x ) 6, x f(x) = x k, x IÊS> ~ SECTION B àíz g»`m 5 go VH$ àë`oh$ àíz Ho$ A H$ h & Question numbers 5 to carry marks each. 5. EH$ nmgm, {OgHo$ \$bh$m na A H$,, bmb a J _ {bio h VWm, 5, 6 hao a J _ {bio h, H$mo CN>mbm J`m & _mzm KQ>Zm A h : àmßv g»`m g_ h VWm KQ>Zm B h : àmßv g»`m bmb h & kmv H$s{OE {H$ Š`m A VWm B ñdv Ì KQ>ZmE± h & A die, whose faces are marked,, in red and, 5, 6 in green, is tossed. Let A be the event number obtained is even and B be the event number obtained is red. Find if A and B are independent events. 6. Xmo XOu, A VWm B, à{v{xz H«$_e: < 00 VWm < 00 H$_mVo h & A EH$ {XZ _ 6 H$_rµO VWm n Q> {gb gh$vm h O~{H$ B à{v{xz 0 H$_rµOo VWm n Q>o {gb gh$vm h & `h kmv H$aZo Ho$ {be {H$ H$_-go-H$_ 60 H$_rµO o VWm n Q> {gbzo Ho$ {be àë`oh$ {H$VZo {XZ H$m` H$ao {H$ l_ bmjv H$_-go-H$_ hmo, a {IH$ àmoj«m_z g_ñ`m Ho$ ê$n _ gyì~õ H$s{OE & Two tailors, A and B, earn < 00 and < 00 per day respectively. A can stitch 6 shirts and pairs of trousers while B can stitch 0 shirts and pairs of trousers per day. To find how many days should each of them work and if it is desired to produce at least 60 shirts and pairs of trousers at a minimum labour cost, formulate this as an LPP. 65/

7. q~xþam P(,, ) VWm Q(5,, ) H$mo {_bmzo dmbr aoim na pñwv EH$ q~xþ H$m x-{zx}em H$ h & CgH$m z-{zx}em H$$kmV H$s{OE & The x-coordinate of a point on the line joining the points P(,, ) and Q(5,, ) is. Find its z-coordinate. 8. kmv H$s{OE : Find : 5 8x x 5 8x x 9. `{X A H$mo{Q> H$m EH$ {df_-g_{_v Amì`yh h, Vmo {gõ H$s{OE {H$ det A = 0. If A is a skew-symmetric matrix of order, then prove that det A = 0. 0. \$bz f(x) = x x, [, 0] Ho$ {be amobo Ho$ à_o` Ho$ à`moj go c H$m _mz kmv H$s{OE & Find the value of c in Rolle s theorem for the function f(x) = x x in [, 0].. Xem BE {H$ \$bz f(x) = x x + 6x 00, na dy _mz h & Show that the function f(x) = x x + 6x 00 is increasing on.. EH$ Am`V H$s b ~mb x, 5 go_r/{_zq H$s Xa go KQ> ahr h Am a Mm S>mB y, go_r/{_zq> H$s Xa go ~ T> ahr h & O~ x = 8 go_r Am a y = 6 go_r h, Vmo Am`V Ho$ joì\$b Ho$ n[adv Z H$s Xa kmv H$s{OE & The length x, of a rectangle is decreasing at the rate of 5 cm/minute and the width y, is increasing at the rate of cm/minute. When x = 8 cm and y = 6 cm, find the rate of change of the area of the rectangle. 65/ 5 P.T.O.

IÊS> g SECTION C àíz g»`m go VH$ àë`oh$ àíz Ho$ A H$ h & Question numbers to carry marks each.. _mz kmv H$s{OE : 0 _mz kmv H$s{OE : Evaluate : 0 Evaluate : x tan x sec x tan x AWdm x x x x tan x sec x tan x OR x x x. Xem BE {H$ q~xþ A, B, C {OZHo$ pñw{v g{xe H«$_e: ^i ^j + ^k, ^i ^j 5^k VWm ^i ^j ^k h, EH$ g_h$mou {Ì^wO Ho$ erf h & AV: {Ì^wO H$m joì\$b kmv H$s{OE & Show that the points A, B, C with position vectors ^i ^j + ^k, ^i ^j 5^k and ^i ^j ^k respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle. 65/ 6

5. H$mS> h {OZ na g»`me±,, 5 VWm 7 A {H$V h, EH$ H$mS> na EH$ g»`m & Xmo H$mS> à{vñwmnzm {H$E {~Zm `mñàn>`m {ZH$mbo JE & _mzm X {ZH$mbo JE Xmo H$mS>m] na {bir g»`mam H$m `moj\$b h & X H$m _mü` VWm àgau kmv H$s{OE & There are cards numbered,, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X. 6. EH$ {dúmb` Ho$ {dúm{w `m Ho$ {be kmv h {H$ 0% {dúm{w `m H$s 00% CnpñW{V h VWm 70% {dúmwu A{Z`{_V h & {nn>bo df Ho$ n[aum_ gy{mv H$aVo h {H$ CZ g^r {dúm{w `m, {OZH$s CnpñW{V 00% h, _ go 70% Zo dm{f H$ narjm _ A J«oS> nm`m VWm A{Z`{_V {dúm{w `m _ go 0% Zo A J«oS> nm`m & df Ho$ A V _, {dúmb` _ go EH$ {dúmwu `mñàn>`m MwZm J`m VWm `h nm`m J`m {H$ CgH$m A J«oS> Wm & àm{`h$vm Š`m h {H$ Cg {dúmwu H$s 00% CnpñW{V h? Š`m {Z`{_VVm Ho$db {dúmb` _ Amdí`H$ h? AnZo CÎma Ho$ nj _ VH $ Xr{OE & Of the students in a school, it is known that 0% have 00% attendance and 70% students are irregular. Previous year results report that 70% of all students who have 00% attendance attain A grade and 0% irregular students attain A grade in their annual examination. At the end of the year, one student is chosen at random from the school and he was found to have an A grade. What is the probability that the student has 00% attendance? Is regularity required only in school? Justify your answer. 7. `{X tan x x tan x x h, Vmo x H$m _mz kmv H$s{OE & If tan x x tan x x, then find the value of x. 8. gma{uh$m Ho$ JwUY_m] H$m à`moj H$a, {gõ H$s{OE {H$ a a a a a (a ) AWdm 65/ 7 P.T.O.

65/ 8 Amì`yh A kmv H$s{OE {H$ 9 8 A 0 Using properties of determinants, prove that ) (a a a a a a OR Find matrix A such that 9 8 A 0 9. `{X x y + y x = a b h, Vmo dy kmv H$s{OE & AWdm `{X e y (x + ) = h, Vmo Xem BE {H$ dy y d. If x y + y x = a b, then find dy. OR If e y (x + ) =, then show that dy y d.

0. kmv H$s{OE : Find : sin d ( cos ) ( sin ) sin d ( cos ) ( sin ). {ZåZ{b{IV a {IH$ àmoj«m_z g_ñ`m H$m AmboI Ûmam hb kmv H$s{OE : Z = x + 5y H$m A{YH$V_rH$aU H$s{OE {ZåZ{b{IV AdamoYm Ho$ A VJ V x + y 00 x + y 70 x 0, y 0 Solve the following linear programming problem graphically : Maximise Z = x + 5y under the following constraints x + y 00 x + y 70 x 0, y 0. x H$m dh _mz kmv H$s{OE Vm{H$ q~xþ A (,, ), B (, x, 5), C (,, ) VWm D (6, 5, ) g_vbr` hm & Find the value of x such that the points A (,, ), B (, x, 5), C (,, ) and D (6, 5, ) are coplanar.. AdH$b g_rh$au y (x + y ) dy = 0 H$m ì`mnh$ hb kmv H$s{OE & Find the general solution of the differential equation y (x + y ) dy = 0. 65/ 9 P.T.O.

IÊS> X SECTION D àíz g»`m go 9 VH$ àë`oh$ àíz Ho$ 6 A H$ h & Question numbers to 9 carry 6 marks each.. Cg q~xþ Ho$ {ZX}em H$ kmv H$s{OE Ohm± q~xþam (,, 5) VWm (,, ) go hmoh$a OmVr aoim, q~xþam (,, ), (,, ) VWm (0,, ) Ûmam ~Zo g_vb H$mo H$mQ>Vr h & AWdm EH$ Ma g_vb, Omo _yb-q~xþ go p H$s AMa Xÿar na pñwv h, {ZX}em H$ Ajm H$mo A, B, C na H$mQ>Vm h & Xem BE {H$ {Ì^wO ABC Ho$ Ho$ÝÐH$ H$m q~xþnw x h & y z p Find the coordinates of the point where the line through the points (,, 5) and (,, ), crosses the plane determined by the points (,, ), (,, ) and (0,, ). OR A variable plane which remains at a constant distance p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is. x y z p dy 5. AdH$b g_rh$au (x y) = (x + y) H$m {d{eîq> hb kmv H$s{OE, {X`m J`m h {H$ y = 0 O~ x = h & Find the particular solution of the differential equation dy (x y) = (x + y), given that y = 0 when x =. 6. g_mh$bz {d{y Ho$ à`moj go Cg {Ì^wO ABC H$m joì\$b kmv H$s{OE {OgHo$ erfm] Ho$ {ZX}em H$ A (, ), B (6, 6) VWm C (8, ) h & AWdm gab aoim x y + = 0 VWm nadb` y = x Ho$ ~rm {Kao joì H$m joì\$b kmv H$s{OE & 65/ 0

Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (, ), B (6, 6) and C (8, ). OR Find the area enclosed between the parabola y = x and the straight line x y + = 0. 7. f : R, Omo f(x) = x x Ûmam àxîm h, na {dmma H$s{OE & Xem BE {H$ f EH $H$s VWm AmÀN>mXH$ h & f H$m à{vbmo_ \$bz kmv H$s{OE & AV: f (0) kmv H$s{OE VWm x kmv H$s{OE Vm{H$ f (x) =. AWdm _mzm A = VWm * A na EH$ {ÛAmYmar g {H«$`m h Omo (a, b) * (c, d) = (ac, b + ad) Ûmam n[a^m{fv h, g^r (a, b), (c, d) A Ho$ {be & kmv H$s{OE {H$ Š`m * H«$_{d{Z_o` VWm ghmmar h & V~, A na * Ho$ gmnoj (i) (ii) A _ VËg_H$ Ad`d kmv H$s{OE & A Ho$ ì`wëh«$_ur` Ad`d kmv H$s{OE & Consider f : R given by f(x) = x x. Show that f is bijective. Find the inverse of f and hence find f (0) and x such that f (x) =. OR Let A = and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) A. Determine, whether * is commutative and associative. Then, with respect to * on A (i) Find the identity element in A. (ii) Find the invertible elements of A. 65/ P.T.O.

8. AB EH$ d Îm H$m ì`mg h VWm d Îm na H$moB q~xþ C pñwv h & Xem BE {H$ {Ì^wO ABC H$m joì\$b A{YH$V_ hmojm, O~ `h EH$ g_{û~mhþ {Ì^wO h & AB is the diameter of a circle and C is any point on the circle. Show that the area of triangle ABC is maximum, when it is an isosceles triangle. 9. `{X A = 5 h, Vmo A kmv H$s{OE & AV: A Ho$ à`moj go g_rh$au {ZH$m` x y + 5z =, x + y z = 5, x + y z = H$m hb kmv H$s{OE & 5 If A =, find A. Hence using A solve the system of equations x y + 5z =, x + y z = 5, x + y z =. 65/