Logic level TOPFET APPLICATIONS FUNCTIONAL BLOCK DIAGRAM PINNING - SOT404 PIN CONFIGURATION SYMBOL

Similar documents
In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

PINNING - SOT404 PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

SMD version of BUK125-50L

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

N-channel TrenchMOS transistor

FEATURES SYMBOL QUICK REFERENCE DATA

FEATURES SYMBOL QUICK REFERENCE DATA. V DSS = 55 V Very low on-state resistance Fast switching

PINNING - SOT223 PIN CONFIGURATION SYMBOL

TOPFET high side switch

FEATURES SYMBOL QUICK REFERENCE DATA

PINNING - SOT93 PIN CONFIGURATION SYMBOL. tab

PowerMOS transistor PINNING - SOT428 PIN CONFIGURATION SYMBOL. tab

TO220AB & SOT404 PIN CONFIGURATION SYMBOL

P-channel enhancement mode MOS transistor

PINNING - TO220AB PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL

PINNING - SOT223 PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Insulated Gate Bipolar Transistor (IGBT)

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

PINNING - SOT186A PIN CONFIGURATION SYMBOL. case

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

BUK A. 1. Product profile. 2. Pinning information. TrenchMOS standard level FET. 1.1 Description. 1.2 Features. 1.

PINNING - SOT93 PIN CONFIGURATION SYMBOL. tab

PINNING - TO220AC PIN CONFIGURATION SYMBOL. tab

FEATURES SYMBOL QUICK REFERENCE DATA

PINNING - TO220AB PIN CONFIGURATION SYMBOL. tab

PHD110NQ03LT. 1. Product profile. 2. Pinning information. N-channel TrenchMOS logic level FET. 1.1 Description. 1.2 Features. 1.

PHP/PHB/PHD55N03LTA. TrenchMOS Logic Level FET

PHP/PHB174NQ04LT. 1. Product profile. 2. Pinning information. N-channel TrenchMOS logic level FET. 1.1 Description. 1.2 Features. 1.

PINNING - TO220AC PIN CONFIGURATION SYMBOL. tab

PINNING - TO220AC PIN CONFIGURATION SYMBOL. tab

PHP/PHB/PHD45N03LTA. TrenchMOS logic level FET

SI Product profile. 2. Pinning information. N-channel TrenchMOS logic level FET. 1.1 Description. 1.2 Features. 1.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

N-channel µtrenchmos ultra low level FET. Top view MBK090 SOT416 (SC-75)

N-channel TrenchMOS logic level FET

µtrenchmos standard level FET Low on-state resistance in a small surface mount package. DC-to-DC primary side switching.

PHT6N06T. 1. Product profile. 2. Pinning information. TrenchMOS standard level FET. 1.1 Description. 1.2 Features. 1.

PMV40UN. 1. Product profile. 2. Pinning information. TrenchMOS ultra low level FET. 1.1 Description. 1.2 Features. 1.

PINNING - SOT186 PIN CONFIGURATION SYMBOL

BUK71/ AIE. TrenchPLUS standard level FET. BUK AIE in SOT426 (D 2 -PAK) BUK AIE in SOT263B (TO-220AB).

PMN40LN. 1. Description. 2. Features. 3. Applications. 4. Pinning information. TrenchMOS logic level FET

PMV56XN. 1. Product profile. 2. Pinning information. µtrenchmos extremely low level FET. 1.1 Description. 1.2 Features. 1.

TrenchMOS ultra low level FET

PHP7NQ60E; PHX7NQ60E

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

PINNING - SOT199 PIN CONFIGURATION SYMBOL. case a1

PSMN004-60P/60B. PSMN004-60P in SOT78 (TO-220AB) PSMN004-60B in SOT404 (D 2 -PAK).

TrenchMOS technology Very fast switching Logic level compatible Subminiature surface mount package.

PSMN002-25P; PSMN002-25B

2N7002F. 1. Product profile. 2. Pinning information. N-channel TrenchMOS FET. 1.1 General description. 1.2 Features. 1.

2N7002T. 1. Product profile. 2. Pinning information. N-channel TrenchMOS FET. 1.1 General description. 1.2 Features. 1.

PMWD16UN. 1. Product profile. 2. Pinning information. Dual N-channel µtrenchmos ultra low level FET. 1.1 General description. 1.

PHP/PHD3055E. TrenchMOS standard level FET. Product availability: PHP3055E in SOT78 (TO-220AB) PHD3055E in SOT428 (D-PAK).

BUK71/ AIE. TrenchPLUS standard level FET

PHM21NQ15T. TrenchMOS standard level FET

IRFR Description. 2. Features. 3. Applications. 4. Pinning information. N-channel enhancement mode field effect transistor

PMV65XP. 1. Product profile. 2. Pinning information. P-channel TrenchMOS extremely low level FET. 1.1 General description. 1.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Silicon Diffused Darlington Power Transistor

PINNING - SOD100 PIN CONFIGURATION SYMBOL. case

BUK71/ ATE. TrenchPLUS standard level FET. BUK ATE in SOT426 (D 2 -PAK) BUK ATE in SOT263B (TO-220AB).

Silicon Diffused Power Transistor

FEATURES SYMBOL QUICK REFERENCE DATA GENERAL DESCRIPTION PINNING SOD59 (TO220AC)

BUK B. N-channel TrenchMOS standard level FET

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

BUK B. N-channel TrenchMOS logic level FET

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

DATA SHEET. BSN304 N-channel enhancement mode vertical D-MOS transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Jun 17

Silicon Diffused Power Transistor

BUK9Y53-100B. N-channel TrenchMOS logic level FET. Table 1. Pinning Pin Description Simplified outline Symbol 1, 2, 3 source (S) 4 gate (G)

DATA SHEET. BSS192 P-channel enhancement mode vertical D-MOS transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Jun 20

BUK A. N-channel TrenchMOS standard level FET

NPN/PNP low V CEsat Breakthrough in Small Signal (BISS) transistor pair in a SOT457 (SC-74) Surface Mounted Device (SMD) plastic package.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

BSH Description. 2. Features. 3. Applications. 4. Pinning information. N-channel enhancement mode field-effect transistor

DATA SHEET. BSN254; BSN254A N-channel enhancement mode vertical D-MOS transistor DISCRETE SEMICONDUCTORS

60 V, 0.3 A N-channel Trench MOSFET

PSMN4R5-40PS. N-channel 40 V 4.6 mω standard level MOSFET. High efficiency due to low switching and conduction losses

BF545A; BF545B; BF545C

PSMN8R3-40YS. N-channel LFPAK 40 V 8.6 mω standard level MOSFET

PSMN2R6-40YS. N-channel LFPAK 40 V 2.8 mω standard level MOSFET

PSMN013-80YS. N-channel LFPAK 80 V 12.9 mω standard level MOSFET

PSMN4R3-30PL. N-channel 30 V 4.3 mω logic level MOSFET. High efficiency due to low switching and conduction losses

PHD/PHP36N03LT. 1. Product profile. 2. Pinning information. N-channel TrenchMOS logic level FET. 1.1 General description. 1.

N-channel TrenchMOS standard level FET

PSMN1R3-30YL. N-channel 30 V 1.3 mω logic level MOSFET in LFPAK

DATA SHEET. PBSS4480X 80 V, 4 A NPN low V CEsat (BISS) transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2004 Aug 5

DISCRETE SEMICONDUCTORS DATA SHEET. book, halfpage M3D302. PBSS4240DPN 40 V low V CEsat NPN/PNP transistor. Product specification 2003 Feb 20

N-channel TrenchMOS logic level FET

Transcription:

DESCRPTON QUCK REFERENCE DATA Monolithic temperature and SYMBOL PARAMETER MAX. UNT overload protected logic level power MOSFET in a 3 pin plastic surface V DS Continuous drain source voltage V mount envelope, intended as a D Continuous drain current 4 A general purpose switch for P D Total power dissipation 2 W automotive systems and other T j Continuous junction temperature C applications. R DS(ON) Drain-source on-state resistance 3 mω APPLCATONS V S = V General controller for driving lamps motors solenoids heaters FEATURES FUNCTONAL BLOCK DAGRAM Vertical power DMOS output stage Low on-state resistance Overload protection against over temperature Overload protection against short circuit load Latched overload protection reset by input V input level Low threshold voltage also allows V control Control of power MOSFET and supply of overload protection circuits derived from input ESD protection on input pin Overvoltage clamping for turn off of inductive loads NPUT RG LOGC AND PROTECTON O/V CLAMP DRAN POWER MOSFET SOURCE Fig.. Elements of the TOPFET. PNNNG - SOT44 PN CONFGURATON SYMBOL PN input DESCRPTON mb TOPFET D 2 drain 3 source mb drain 2 3 P S June 996 Rev.

LMTNG VALUES Limiting values in accordance with the Absolute Maximum Rating System (EC 34) SYMBOL PARAMETER CONDTONS MN. MAX. UNT V DSS Continuous off-state drain source V S = V - V voltage V S Continuous input voltage - 6 V D Continuous drain current T mb 2 C; V S = V - 4 A D Continuous drain current T mb C; V S = V - 28 A DRM Repetitive peak on-state drain current T mb 2 C; V S = V - 8 A P D Total power dissipation T mb 2 C - 2 W T stg Storage temperature - - C T j Continuous junction temperature 2 normal operation - C T sold Lead temperature during soldering - 2 C OVERLOAD PROTECTON LMTNG VALUES With the protection supply provided via the input pin, TOPFET can protect itself from two types of overload. SYMBOL PARAMETER CONDTONS MN. MAX. UNT V SP Protection supply voltage 3 for valid protection 4 - V Over temperature protection V DDP(T) Protected drain source supply voltage V S = V - V Short circuit load protection V DDP(P) Protected drain source supply voltage 4 V S = V - 24 V P DSM nstantaneous overload dissipation T mb = 2 C - 2. kw OVERVOLTAGE CLAMPNG LMTNG VALUES At a drain source voltage above V the power MOSFET is actively turned on to clamp overvoltage transients. SYMBOL PARAMETER CONDTONS MN. MAX. UNT DROM Repetitive peak clamping current V S = V - 4 A E DSM Non-repetitive clamping energy T mb 2 C; DM = 2 A; - J V DD 2 V; inductive load E DRM Repetitive clamping energy T mb 8 C; DM = 6 A; - 8 mj V DD 2 V; f = 2 Hz ESD LMTNG VALUE SYMBOL PARAMETER CONDTONS MN. MAX. UNT V C Electrostatic discharge capacitor Human body model; - 2 kv voltage C = 2 pf; R =. kω Prior to the onset of overvoltage clamping. For voltages above this value, safe operation is limited by the overvoltage clamping energy. 2 A higher T j is allowed as an overload condition but at the threshold T j(to) the over temperature trip operates to protect the switch. 3 The input voltage for which the overload protection circuits are functional. 4 The device is able to self-protect against a short circuit load providing the drain-source supply voltage does not exceed V DDP(P) maximum. For further information, refer to OVERLOAD PROTECTON CHARACTERSTCS. June 996 2 Rev.

THERMAL CHARACTERSTCS Thermal resistance R th j-mb Junction to mounting base - -.8. K/W R th j-a Junction to ambient minimum footprint FR4 PCB - - K/W STATC CHARACTERSTCS T mb = 2 C unless otherwise specified V (CL)DSS Drain-source clamping voltage V S = V; D = ma - - V V (CL)DSS Drain-source clamping voltage V S = V; DM = 4 A; t p 3 µs; - - 7 V δ. DSS Zero input voltage drain current V DS = 2 V; V S = V -. µa DSS Zero input voltage drain current V DS = V; V S = V - 2 µa DSS Zero input voltage drain current V DS = 4 V; V S = V; T j = 2 C - µa R DS(ON) Drain-source on-state DM = 2 A; V S = V - 3 3 mω resistance t p 3 µs; δ. OVERLOAD PROTECTON CHARACTERSTCS TOPFET switches off when one of the overload thresholds is reached. t remains latched off until reset by the input. Short circuit load protection T mb = 2 C; L µh E DS(TO) Overload threshold energy V DD = 3 V; V S = V -. - J t d sc Response time V DD = 3 V; V S = V -.8 - ms Over temperature protection T j(to) Threshold junction temperature V S = V; from D 2 A 2 - - C NPUT CHARACTERSTCS T mb = 2 C unless otherwise specified. The supply for the logic and overload protection is taken from the input. V S(TO) nput threshold voltage V DS = V; D = ma.. 2. V S nput supply current V S = V; normal operation -.2.3 ma V SR Protection reset voltage 3 2. 2.6 3. V V SR Protection reset voltage T j = C. - - SL nput supply current V S = V; protection latched 2 3.8 ma V (BR)S nput clamp voltage = ma 6 - - V R G nput series resistance to gate of power MOSFET -. - kω The short circuit load protection is able to save the device providing the instantaneous on-state dissipation is less than the limiting value for P DSM, which is always the case when V DS is less than V DSP maximum. Refer to OVERLOAD PROTECTON LMTNG VALUES. 2 The over temperature protection feature requires a minimum on-state drain source voltage for correct operation. The specified minimum D ensures this condition. 3 The input voltage below which the overload protection circuits will be reset. June 996 3 Rev.

TRANSFER CHARACTERSTCS T mb = 2 C g fs Forward transconductance V DS = V; DM = 2 A t p 3 µs; δ. 7 28 - S D(SC) Drain current V DS = 3 V; V S = V - 6 - A SWTCHNG CHARACTERSTCS T mb = 2 C. R = Ω. Refer to waveform figures and test circuits. t d on Turn-on delay time V DD = 3 V; V S = V - 2 - µs t r Rise time resistive load R L =. Ω - 8 - µs t d off Turn-off delay time V DD = 3 V; V S = V - 8 - µs t f Fall time resistive load R L =. Ω - 8 - µs t d on Turn-on delay time V DD = 3 V; V S = V - 3.7 - µs t r Rise time inductive load DM = A - 3.7 - µs t d off Turn-off delay time V DD = 3 V; V S = V - 3 - µs t f Fall time inductive load DM = A -.4 - µs REVERSE DODE LMTNG VALUE SYMBOL PARAMETER CONDTONS MN. MAX. UNT S Continuous forward current T mb 2 C; V S = V - A REVERSE DODE CHARACTERSTCS T mb = 2 C V SDS Forward voltage S = A; V S = V; t p = 3 µs -.. V t rr Reverse recovery time not applicable 2 - - - - ENVELOPE CHARACTERSTCS L d nternal drain inductance Measured from upper edge of tab - 2. - nh to centre of die L s nternal source inductance Measured from source lead - 7. - nh soldering point to source bond pad During overload before short circuit load protection operates. 2 The reverse diode of this type is not intended for applications requiring fast reverse recovery. June 996 4 Rev.

2 9 8 7 6 4 3 2 PD% Normalised Power Derating 2 4 6 8 2 4 Tmb / C Fig.2. Normalised limiting power dissipation. P D % = P D /P D (2 C) = f(t mb ).. Zth / (K/W) D =..2...2 tp D = T T t. E-7 E- E-3 E- E+ t / s Fig.. Transient thermal impedance. Z th j-mb = f(t); parameter D = t p /T P D tp 2 9 8 7 6 4 3 2 D% Normalised Current Derating 2 4 6 8 2 4 Tmb / C Fig.3. Normalised continuous drain current. D % = D / D (2 C) = f(t mb ); conditions: V S = V 2 9 8 7 6 4 3 2 = 2 4 6 8 2 4 6 8 2 Fig.6. Typical output characteristics, T j = 2 C. D = f(v DS ); parameter V S ; t p = 2 µs & t p < t d sc 6... 4. 4. 3. 3. 2. D & DM / A RDS(ON) = VDS/D Overload protection characteristics not shown DC tp = us us ms ms ms Fig.4. Safe operating area. T mb = 2 C D & DM = f(v DS ); DM single pulse; parameter t p 9 8 7 6 4 3 2 = 2 3 4 Fig.7. Typical on-state characteristics, T j = 2 C. D = f(v DS ); parameter V S ; t p = 2 µs. 4. 4. 3. 3. 2. June 996 Rev.

RDS(ON) / mohm a Normalised RDS(ON) = f(tj). = 3 3. 4 4... 2 4 6 8 Fig.8. Typical on-state resistance, T j = 2 C. R DS(ON) = f( D ); parameter V S ; t p = 2 µs -6-4 -2 2 4 6 8 2 4 Tj / C Fig.. Normalised drain-source on-state resistance. a = R DS(ON) /R DS(ON) 2 C = f(t j ); D = 2 A; V S = V td sc / ms 8 6 PDSM 4 2 2 3 4 6 Fig.9. Typical transfer characteristics, T j = 2 C. D = f(v S ) ; conditions: V DS = V; t p = 2 µs.. PDS / kw Fig.2. Typical overload protection characteristics. t d sc = f(p DS ); conditions: V S 4 V; T j = 2 C. 3 gfs / S 2 PDSM% 2 8 6 4 2-6 -4-2 2 4 6 8 2 4 Tmb / C Fig.. Typical transconductance, T j = 2 C. g fs = f( D ); conditions: V DS = V; t p = 2 µs Fig.3. Normalised limiting overload dissipation. P DSM % = P DSM /P DSM (2 C) = f(t mb ) June 996 6 Rev.

. Energy & Time S / ua Energy / J 4. 3. Time / ms 2 Tj(TO) -6-2 2 6 4 8 22 Tmb / C Fig.4. Typical overload protection characteristics. Conditions: V DD = 3 V; V S = V; SC load = 3 mω 2 4 6 8 Fig.7. Typical DC input characteristics, T j = 2 C. S = f(v S ); normal operation S / ma 4 4 PROTECTON LATCHED 3 typ. 3 RESET 2 2 NORMAL 6 7 Fig.. Typical clamping characteristics, 2 C. D = f(v DS ); conditions: V S = V; t p µs 2 4 6 8 Fig.8. Typical DC input characteristics, T j = 2 C. SL = f(v S ); overload protection operated D = A VS(TO) / V 2 S / A 2 max. typ. min. -6-4 -2 2 4 6 8 2 4 Tj / C Fig.6. nput threshold voltage. V S(TO) = f(t j ); conditions: D = ma; V DS = V.2.4.6.8.2.4.6.8 2 VSD / V Fig.9. Typical reverse diode current, T j = 2 C. S = f(v SDS ); conditions: V S = V; t p = 2 µs June 996 7 Rev.

VDD VDD = VCL RL LD t p : adjust for correct D TOPFET D TOPFET D R VS D.U.T. S D measure V R Fig.2. Test circuit for resistive load switching times. P R VS D.U.T. S D measure V R Fig.23. Test circuit for inductive load switching times. P RESSTVE TURN-ON 9% NDUCTVE TURN-ON 9% td on tr td on tr % % % % 2 Time / us Fig.2. Typical switching waveforms, resistive load. V DD = 3 V; R L =. Ω; R = Ω, T j = 2 C. 2 Time / us Fig.24. Typical switching waveforms, inductive load. V DD = 3 V; D = A; R = Ω, T j = 2 C. RESSTVE TURN-OFF td off 9% NDUCTVE TURN-OFF td off 9% tf 9% tf 9% % % 2 Time / us Fig.22. Typical switching waveforms, resistive load. V DD = 3 V; R L =. Ω; R = Ω, T j = 2 C. - 2 Time / us Fig.2. Typical switching waveforms, inductive load. V DD = 3 V; D = A; R = Ω, T j = 2 C. June 996 8 Rev.

2 9 8 7 6 4 3 2 EDSM% 2 4 6 8 2 4 Tmb / C Fig.26. Normalised limiting clamping energy. E DSM % = f(t mb ); conditions: D = 2 A; V S = V.. iso normalised to 2 C -6-2 2 6 4 8 Tj / C Fig.29. Normalised input current (normal operation). S / S 2 C = f(t j ); V S = V VDS D V(CL)DSS VDD L + VDD. isl normalised to 2 C VS TOPFET P D VDS D.U.T. - -D/ RS Schottky S R shunt Fig.27. Clamping energy test circuit, R S = Ω. E DSM =. L 2 D V (CL)DSS /(V (CL)DSS V DD ). -6-2 2 6 4 8 Tj / C Fig.3. Normalised input current (protection latched). SL / SL 2 C = f(t j ); V S = V ma dss ua ua typ. ua na 2 4 6 8 2 4 Tj / C Fig.28. Typical off-state leakage current. DSS = f(t j ); Conditions: V DS = 4 V; S = V. June 996 9 Rev.

MECHANCAL DATA Dimensions in mm Net Mass:.4 g.3 max 4. max.4 max max.4 2. Notes. Epoxy meets UL94 V at /8". 2.4 (x2) MOUNTNG NSTRUCTONS.8 max (x2) Fig.3. SOT44 : centre pin connected to mounting base.. Dimensions in mm. 9. 7. 2. 3.8.8 Fig.32. SOT44 : minimum pad sizes for surface mounting. Notes. Plastic meets UL94 V at /8". June 996 Rev.

DEFNTONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. This data sheet contains final product specifications. Limiting values Limiting values are given in accordance with the Absolute Maximum Rating System (EC 34). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. Philips Electronics N.V. 996 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. LFE SUPPORT APPLCATONS These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. June 996 Rev.