Odd-frequency pairing in Non-uniform superconducting systems

Similar documents
Odd-Frequency Pairing in Superconducting Heterostructures

Surface states in p-wave superconductors and odd-frequency pairing

arxiv: v1 [cond-mat.supr-con] 22 Dec 2008

Andreev bound states in anisotropic superconductor junctions

Unconventional pairing in three-dimensional topological insulators with warped surface state Andrey Vasenko

Supplementary figures

Exotic Properties of Superconductor- Ferromagnet Structures.

SUPPLEMENTARY INFORMATION

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

Nonlinear sigma model for odd-frequency triplet superconductivity in superconductor/ferromagnet structures

Josephson Effect in FS/I/N/I/FS Tunnel Junctions

Kobe University Repository : Kernel

arxiv: v1 [cond-mat.supr-con] 7 May 2011 Edge states of Sr 2 RuO 4 detected by in-plane tunneling spectroscopy

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

High-Temperature Superconductors: Playgrounds for Broken Symmetries

"First USC Theory-Experiment Collaborative Meeting" Rutherford Appleton Laboratory

Quantum dynamics in many body systems

Strongly Correlated Systems:

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Exotic Phenomena in Topological Insulators and Superconductors

Local tunneling characteristics near a grain boundary of a d-wave superconductor as probed by a normal-metal or a low-t c -superconductor STM tip

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

arxiv: v2 [cond-mat.supr-con] 11 Aug 2017

Quantum Processes in Josephson Junctions & Weak Links. J. A. Sauls

Topological Insulators and Ferromagnets: appearance of flat surface bands

Supercurrent-carrying density of states in diffusive mesoscopic Josephson weak links

Properties of superconductor/ferromagnet structures with spin-dependent scattering

Effects of surface roughness on the paramagnetic response of small unconventional superconductors

Ferromagnetic superconductors

Topological Kondo Insulators!

Disordered Superconductors

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

DIFFERENT SPIN AND SPACE SYMMETRIES. J.A. Sauls, Z. Zou, P.W. Andersonyy. Joseph Henry Laboratories of Physics. Jadwin Hall. Princeton University

From single magnetic adatoms to coupled chains on a superconductor

Interference phenomena and long-range proximity effect in superconductor/ferromagnet systems

Domain Walls and Long-Range Triplet Correlations in SFS Josephson Junctions. A. Buzdin

Proximity-Induced Superconductivity in a Ferromagnetic Semiconductor (In,Fe)As

SUPPLEMENTARY INFORMATION

Key symmetries of superconductivity

H c2 II (T) β"-(et) 2 SF 5 CH 2 CF 2 SO H p. =9.6 T (T c =5K) T c /u B H (T) T (mk) 200 H Plane. 56 mk

Spontaneous currents in ferromagnet-superconductor heterostructures

Knight Shift Measurements on Superconducting Sr 2 RuO 4

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

2004 American Physical Society. Reprinted with permission.

Quantum phase transitions in Mott insulators and d-wave superconductors

Symmetry Properties of Superconductors

Alignment of chiral order parameter domains in Sr 2 RuO 4 by magnetic field cooling

arxiv:cond-mat/ v1 8 May 1997

Scanning Tunnelling Microscopy Observations of Superconductivity

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

Principles of Electron Tunneling Spectroscopy

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Direct penetration of spin-triplet superconductivity into a

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998.

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Superconductivity at high magnetic field

Impurity States in D-wave Superconductors

Chapter 2 Superconducting Gap Structure and Magnetic Penetration Depth

Superconductivity and Electron Correlations in Ruthenates

Order and quantum phase transitions in the cuprate superconductors

Valence Bonds in Random Quantum Magnets

The quantum mechanical character of electronic transport is manifest in mesoscopic

Theory of Nonequilibrium Superconductivity *

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Determining the Order Parameter of Unconventional Superconductors by Josephson Interferometry

Magnetism in correlated-electron materials

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Splitting of a Cooper pair by a pair of Majorana bound states

Topological order in the pseudogap metal

Superconductivity at nanoscale

Neutron scattering from quantum materials

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Protection of the surface states of a topological insulator: Berry phase perspective

What's so unusual about high temperature superconductors? UBC 2005

p 0 Transition in Superconductor-Ferromagnet-Superconductor Junctions 1

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Supplementary Figures

Tuning order in cuprate superconductors

Multipole Superconductivity and Unusual Gap Closing

Topological Insulators

Superconducting fluctuations, interactions and disorder : a subtle alchemy

arxiv: v1 [cond-mat.supr-con] 11 Mar 2019

LECTURE 3: Refrigeration

Vortex States in a Non-Abelian Magnetic Field

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Ehrenfest Relations for Ultrasound Absorption in Sr 2 RuO 4

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

arxiv: v1 [cond-mat.supr-con] 30 Apr 2014

arxiv: v1 [cond-mat.supr-con] 22 Jan 2014

arxiv:cond-mat/ v1 7 Jun 1994

Superconducting proximity effects in magnetic metals

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Can superconductivity emerge out of a non Fermi liquid.

Topological Insulators

Transcription:

Odd-frequency pairing in Non-uniform superconducting systems Yukio Tanaka Department of Applied Physics Nagoya University 2007 11/28 Yukawa Institute YKIS 2007

Main Collaborators A. A. Golubov Twente University Y. Asano Hokkaido University S. Kashiwaya NIAIST (Tsukuba) M. Ueda Tokyo Institute of Technology Y. Tanuma Kanagawa University T. Yokoyama Nagoya University Y. Sawa Nagoya University Y. V. Nazarov Delft University

Other Main Collaborators (2) K. Miyake Osaka University S. Onari Nagoya University K. Yada Nagoya University Y. Fuseya University of Tokyo H. Kohno Osaka University

Contents What is odd-frequency pairing Ballistic junctions Diffusive normal metal junctions Vortex core Odd-pairing order (gap function) in bulk system

What is odd-frequency pairing states?

Conventional Cooper pair Pair amplitude F ss' ( k r ) = ˆ c r c ˆ r k s k s' = ( r k ) (s,s') orbital spin Sign chance due to the exchange of two electrons k r k r r r ( k ) = ( k Even Parity ) L = s-wave, d-wave, g-wave, i-wave s s' S=0 spin-singlet Spin-singlet even-parity Odd Parity r r ( k ) = ( k ) L = 1,3,5, p-wave, f-wave, h-wave S=1 spin-triplet Spin-triplet odd-parity

More general classification of a Cooper pair Cooper pair is not necessarily formed between two electrons at the same time. Time difference (Frequency dependence) We must consider Fermi-Dirac statistics (Pauli s rule) by taking account of the frequency dependence.

Symmetry of the pair function + symmetric, anti-symmetric Frequency time) Spin Orbital Total ESE +(even) (singlet) +(even) ETO +(even) + (triplet) (odd) OTE (odd) + (triplet) +(even) OSO (odd) (singlet) (odd) ESE (Even-frequency spin-singlet even-parity) ETO (Even-frequency spin-triplet odd-parity) OTE (Odd-frequency spin-triplet even-parity) OSO (Odd-frequency spin-singlet odd-parity)

Odd-frequency pairing state (1)Odd-freqeuncy pairing order (pair potential, gap function ) in uniform bulk system (odd-frequency superconductor) (2)Odd-frequency pairing state (not order, pair amplitude) in superconducting junctions Pair potential Pair amplitude

Odd frequency pairing state in bulk system (Odd-frequency superconductor) 1974 Berezinskii Superfluid 3 He s-wave triplet experimentally 1992-1993 Balatsky- Abrahams Schrieffer Scalapino High-Tc p-wave singlet phenomenological experimentally 1994 1997 Coleman Mirranda Tsvelik Kondo lattice p-wave singlet phenomenological Experimentally? 1999 Vojta-Dagotto Triangular lattice -(BEDT-TTF) 2 X s-wave triplet RPA?? Experimentally?? 2003 Fuseya Kohno Miyake Ce compound p-wave singlet phenomenological Experimentally? Kirtpatrik(1991) Zachar et al (1998), Belitz (1998)

Odd-frequency Pairing state (not pair potential ) is generated in ferromagnet junctions _ + Odd frequency spin-triplet s-wave pair Ferromagnet Superconductor Bergeret, Efetov, Volkov, (2001) Eschrig, Buzdin,Golubov, Kadigrobov,Fominov, Radovic Generation of the odd-frequency pair amplitude in ferromagnet

Is the existence of ferromagnet a necessary condition for the realization of the odd-frequency pairing state? No

Ubiquitous presence of the odd frequency pairing state Even in the conventional even-frequency superconductors, odd-frequency pairing state can be expected near the interface (surface). Y. Tanaka, A. Golubov, S. Kashiwaya, and M. Ueda Phys. Rev. Lett. 99, 037005 (2007) M. Eschrig, T. Lofwander, Th. Champel, J.C. Cuevas and G. Schon J. Low Temp. Phys 147 457(2007)

Eilenberger Equation Quasiclassical approximation (ballistic) Cooper pair is formed by two electrons on the Fermi surface The effective pair potential is determined by the direction of the motion of electrons. Kopnin Theory of Nonequilibrium Superconductivity", Oxford University Press (2001).

Quasi-classical Green s functions Eilenberger s equation Quasiparticle function Pair amplitude Bulk state Form factor ballistic normal metal S N 0 S x

General properties frequency) Pair potential has even-frequency symmetry. Even-frequency (real), bulk-state Spatial change of the pair potential Odd-frequency (imaginary) Interface-induced state

Ballistic junction Ballistic Normal metal (semi-infinite) Superconductor (semi-infinite) Y. Tanaka, A. Golubov, S. Kashiwaya, and M. Ueda Phys. Rev. Lett. 99 037005 (2007)

Even-frequency Spin-singlet even parity (ESE) superconductor (low-transparent) (high-transparent) even-frequency s-wave component odd-frequency p x -wave component Y. Tanaka, et al PRL 99 037005 (2007)

Even-frequency Spin-triplet odd-parity (ETO) superconductor (low-transparent) (high-transparent) even-frequency p x -wave component odd-frequency s-wave component Y. Tanaka, et al PRL 99 037005 (2007)

Mid gap Andreev resonant (bound) state (MARS) 4 Normalized DOS 2 0 1 0 1 / 0 Interface (surface) Local density of state has a zero energy peak. Sign change of the pair potential at the interface. Tanaka Kashiwaya PRL 74 3451 (1995), Rep. Prog. Phys. 63 1641 (2000) Buchholz(1981) Hara Nagai(1986) Hu(1994) Matsumoto Shiba(1995) Ohashi Takada(1995) Hatsugai and Ryu (2002)

Zero bias conductance peak (by MARS) observed in cuprate (110)-Junction. u.) (a n c e o n d u c ta C 60 K 40 K 25 K 4.2 K -60-40 -20 0 20 40 Voltage (mv) S. Kashiwaya and Y. Tanaka Rep. Prog. Phys. 63 1641 (2000) Iguchi Wang et al. Phys. Rev. B60, 4272 (1999)

Superconducting Materials where MARS is observed YBa 2 CuO 7- (Geerk, Kashiwaya, Iguchi, Greene, Yeh, ) Bi 2 Sr 2 CaCu 2 O y (Ng, Suzuki, Greene.) La 2-x Sr x CuO 4 (Iguchi) La 2-x Ce x CuO 4 (Cheska) Pr 2-x Ce x CuO 4 (R.L.Greene) Sr 2 RuO 4 (Mao, Meno, Kawamura,Lube) -(BEDT-TTF) 2 X, X=Cu[N(CN) 2 ]Br (Ichimura) UBe 13 (Ott) CeCoIn 5 (Wei Greene) PrOs 4 Sb 12 (Wei)

Exact solution (1D) x Schopohl arxiv:cond-mat/9804064, Hara, Nagai Prog. Theor. Phys. 74 1237 (1986) 0

Summary of proximity effect (No spin flip) (1) (2) (3) Bulk state ESE (s,d x2-y2 -wave) ESE (d xy -wave) ETO (p x -wave) Sign change (MARS) No Yes Yes Interface-induced state (subdominant component ) ESE + (OSO) OSO +(ESE) OTE + (ETO) (4) ETO (p y -wave) No ETO + (OTE) ESE (Even-frequency spin-singlet even-parity) ETO (Even-frequency spin-triplet odd-parity) OTE (Odd-frequency spin-triplet even-parity) OSO (Odd-frequency spin-singlet odd-parity Y. Tanaka, A. Golubov, S. Kashiwaya, and M. Ueda Phys. Rev. Lett. 99 037005 (2007)

Ballistic junction Ballistic Normal metal (finite length) Superconductor (semi-infinite) Y. Tanaka, Y. Tanuma and A.A. Golubov, Phys. Rev. B 76 054522 (2007) Y. Tanaka, Y. Tanuma and A.A. Golubov, PRB 76 054522 (2007)

Odd-frequency pairing state in spin-singlet s-wave superconductor junctions OSO (Odd-frequency spin-singlet odd-parity) ESE (Even-frequency spin-singlet even-parity) High transmissivity Low transmissivity OSO state is generated from superconductor with ESE symmetry At the N/S interface(s-side), ESE state is dominant for low transmissivity. Y. Tanaka, Y. Tanuma A.A. Golubov, PRB 76 054522 (2007)

Ratio of the pair amplitude in the N region (odd/even) At some energy, odd-frequency component can exceed over even frequency one. Odd-frequency pairing Even-frequency pairing Ratio at the interface PRB 76 054522 (2007)

Ratio of the pair amplitude at the N/S interface and the bound state level Bound states condition (Z=0) McMillan Thomas) Odd-frequency pairing Even-frequency pairing At the N/S interface, only the odd-frequency component exists just at the bound state energy!! Y. Tanaka, Y. Tanuma and A.A. Golubov, PRB 76 054522 (2007)

Impurity scattering effect Ballistic Normal metal Superconductor Impurity scattering (isotropic) Diffusive Normal metal (DN) Superconductor Only s-wave pairing state is possible in DN Tanaka and Golubov, Phys. Rev. Lett. 98, 037003 (2007)

Available for diffusive limit Usadel equation Angular average Diffusive limit Diffusive normal metal region attached to superconductor

Diffusive normal metal (DN)/ unconventional superconductor (US) junctions Insulator DN US We must make a proper boundary condition at the interface of Usadel Green s function in DN. (T=0K) Tanaka et al, PRL 90 167003 (2003) PRB 70 012507 (2004)

Theory Quasiclassical Keldysh-Usadel equation G. Eilenberger, Z. Phys. 214, 195 (1968). K. Usadel, PRL 25, 507 (1970). A. I. Larkin and Yu. N. Ovchinnikov, JETP 26, 1200 (1968); 41, 155 (1977) W. Belzig, et. al., Superlattices and Microstructures 25, 1251 (1999). A. F. Volkov, A. V. Zaitsev, and T. M. Klapwijk, Physica C 210, 21 (1993). A. V. Zaitsev, Phys. Lett. A 194, 315 (1994).

s-wave: Theory Boundary condition at NS interface A. V. Zaitsev, JETP 59, 1015 (1984) M. Yu. Kuprianov and V. F. Lukichev JETP 67, 1163 (1988) Yu. V. Nazarov, PRL 73, 1420 (1994); Superlattices and Microstructures 25, 1221 (1999). d-wave: Y. Tanaka, Yu. V. Nazarov, and S. Kashiwaya, PRL 90, 167003 (2003). p-wave: Y. Tanaka and S. Kashiwaya, PRB 70, 012507 (2004) -parameterization

General theory of Proximity effect (diffusive normal metal/ superconductor junctions ) (1) Symmetry of the pair potential Even-frequency spin-singlet even-parity (ESE) Induced pair amplitude in DN ESE (2) Even-frequency spin-triplet odd-parity (ETO) OTE ESE (Even-frequency spin-singlet even-parity) ETO (Even-frequency spin-triplet odd-parity) OTE (Odd-frequency spin-triplet even-parity) Proximity into DN (Diffusive normal metal) even-parity Odd-parity PRL 98, 037003 (2007)

Unusual proximity effect in spin-triplet p-wave junction DN 4 p wave LDOS(Normalized) 2 OTE (Odd-frequency spin-triplet even-parity) 0 0.1 0 0.1 0.2 Generation of odd-frequency state in DN Purely OTE (s-wave) state in DN PRL 98, 037003 (2007)

Conventional proximity effect in spin-singlet d- wave junction (similar to s-wave) DN =0 d wave DOS in DN region 2 LDOS(Normalized) 1 ESE (Even-frequency spin-singlet even-parity) 0 0.1 0 0.1 0.2 / 0 Generation of odd-frequency state in DN Purely ESE (s-wave) state in DN PRL 98, 037003 (2007)

Odd-frequency spin-triplet s-wave pairing state is induced in diffusive normal metal MARS diffusive metal (DN) Spin-triplet p-wave superconductor Mid gap Andreev state (MARS) can penetrate into DN as an odd-frequency pairing state.

Summary of proximity effect (No spin flip) Bulk state Sign change Interface-induced state (subdominant) Proximity into DN (1) (2) (3) (4) ESE(s,dx2-y2 -wave) ESE (d xy -wave) ETO (p x -wave) ETO (p y -wave) No Yes Yes No ESE + (OSO) OSO +(ESE) OTE + (ETO) ETO + (OTE) ESE No OTE No ESE (Even-frequency spin-singlet even-parity) ETO (Even-frequency spin-triplet odd-parity) OTE (Odd-frequency spin-triplet even-parity) OSO (Odd-frequency spin-singlet odd-parity) Proximity into DN (Diffusive normal metal) even-parity (s-wave) Odd-parity Y. Tanaka, et al Phys. Rev. Lett. 037005 (2007)

Theoretical prediction to detect odd-frequency paring state Asano Tanaka Golubov Kashiwaya, Phys. Rev. Lett. 99, 067005 (2007). Sr 2 RuO 4 :I+ OTE state OTE (Odd-frequency spin-triplet even-parity) ESE (Even-frequency spin-singlet even-parity) :I- :V+ :V- Kashiwaya, Maeno 2007 ESE state Zero energy peak No Zero energy peak

Vortex core state (s-wave) + + () r = 0 tanh x + 2 2 x y x iy y 2 2 Core center sits at the origin 0 in s-wave superconductor Pair potential LDOS 0 r How about the symmetry of the pairing amplitude around the core? T.Yokoyama, Y. Tanaka, A.A. Golubov arxiv: 0710.2967

Spatial dependence of pair amplitude 1 0-1 Ref s Ref dx2-y2 Imf dxy (ESE state) f f + f cos + f s px py 2 2 f1 f 2 sin + f cos 2 + f sin 2 dx y y E=0 dxy + f cos3 + f sin 3 4 3 2 1 0 0.2 0.4 0.6 0.8 1 x / (OSO state) Ref px Imf py Ref f1 Imf f2 Re Im f f px px = Im f = Re py f At the core center only odd-frequency singlet chiral p-wave pairing amplitude can survive py (core center) T.Yokoyama, Y. Tanaka, A.A. Golubov arxiv: 0710.2967

Symmetry of the vortex core + + ( r) = 0 exp( il ) tanh x + y 2 2 x y x iy 2 2 m l angular momentum m vorticity l m bulk Center of the vortex core Even Even ESE (s-wave..) ESE Even Odd ESE (s-wave..) OSO Odd Even ETO (chiral p-wave) ETO Odd Odd ETO (chiral p-wave) OTE ESE (Even-frequency spin-singlet even-parity) ETO (Even-frequency spin-triplet odd-parity) OTE (Odd-frequency spin-triplet even-parity) OSO (Odd-frequency spin-singlet odd-parity Angular momentum at the center of core l+m Yokoyama Tanaka Golubov(2007)

Possible realization of oddfrequency pair potential (bulk) Near the magnetic critical point Nesting condition is not good d-wave pairing should be suppressed

2D Hubbard model Triangular lattice U -t -t V -t V

Formulation (V 0)

Eliashberg equation Pairing symmetry with largest is dominant

U-V Phase diagram 2 charge order V/t q=(2 /3,2 /3) 1 magnetic order q= (0.38,0.38 ) 0 0 2 4 6 U/t

T-dependence of 0.8 0.8 0.6 0.4 OTE odd - triplet - s 0.6 0.4 OTE odd - triplet - s 0.2 even - singlet - d odd - singlet - p even - triplet - p 0 0 0.2 0.4 T/t ESE OSO ETO 0.2 even - singlet - d ESE odd - singlet - f even - triplet - f 0 0 0.2 0.4 T/t OSO ETO

T-dependence of OTE ESE Bulk Odd-pairing state (OTE state) can be stabilized at some parameter region

Extensions to odd-frequency superconductors Y. Tanaka, A. Golubov, S. Kashiwaya, and M. Ueda Phys. Rev. Lett. 99 037005 (2007)

Low transparency limit ESE (Even-frequency spin-singlet even-parity) ETO (Even-frequency spin-triplet odd-parity) OTE (Odd-frequency spin-triplet even-parity) OSO (Odd-frequency spin-singlet odd-parity PRL 99 037005 (2007)

Josephson couplings between even-frequency superconductor and odd-frequency one 1. (1) and (6) 2. (2) and (5) 3. (3) and (8) 4. (4) and (7) Presence of the Lowest order Josephson coupling PRL 99 037005 (2007)

Previous theory Abrahams, Balatsky, Scalapino, and Schrieffer Phys. Rev. B 52, 1271-1278 (1995) There is no lowest-order Josephson coupling between odd- and even-frequency superconductors. Interface induced state is neglected!!

Josephson current (Lowest Order coupling) L (even-frequency) + R (odd-frequency) Interface state (1)L-side (Even-frequency superconductor) Odd function of Matsubara Even function of Matsubara (2)R-side (odd-frequency superconductor) Even function of Matsubara Odd function of Matsubara (Macroscopic phase difference between two superconductors) Anomalous current phase relation PRL 99 037005 (2007)

Underlying physics (1) Near the interface, even and odd-parity pairing states can mix due to the breakdown of the translational symmetry. The Fermi-Dirac statistics then dictates that the induced pair amplitude at the interface should be odd (even) in frequency where the bulk pair potential has an even (odd)-frequency component. PRL 99 037005 (2007)

Underlying physics (2) To be compatible with the time reversal invariance in each superconductor, the phase of the interface induced pair amplitude undergoes a /2 shift from that of the bulk one. ESE OSO The phase of f 1L+ has a /2 shift from that of f 2L+. PRL 99 037005 (2007)

Underlying physics (3) This twist of the phase of the pair amplitude gives rise to an anomalous Josephson current, where the current phase relation is proportional cos. ESE OSO OSO PRL 99 037005 (2007)

Breakdown of the time reversal symmetry when we make a junction (Macroscopic phase) Even-frequency L Odd-frequency R Although both superconductors do not break the time reversal symmetry themselves, the resulting Josephson coupling breaks the time reversal symmetry since the parities with respect to frequency dependence in even- and odd-frequency superconductors differ from each other. PRL 99 037005 (2007)

Anomalous Josephson effect between even- and odd-frequency superconductors Even-frequency L Odd-frequency R Current-phase relation becomes Y. Tanaka, A. Golubov, S. Kashiwaya, and M. Ueda PRL 99 037005 (2007)

Conclusions (1)Ubiquitous presence of the odd-frequency pairing state (2)Odd-frequency pairing state is enhanced in the presence of the mid gap Andreev resonant state. (3)The origin of the anomalous proximity effect in DN/spin-triplet p-wave junction is the generation of the odd-frequency pairing state. (4)Odd-frequency pairing state in a vortex core (5)Anomalous Josephson coupling between even and odd-frequency superconductor

Summary Odd-frequency pairing becomes a key concept in the physics of superconductor junctions and non-uniform superconducting and superfluid systems.

V-dependence of 0.6 even - singlet - d s V 0.4 0.2 odd - triplet - s odd - singlet - f,p even - triplet - f,p d V 0 0 0.5 1 V/t

Ferromagnet (metal)/superconductor junctions Diffusive Ferromagnet (DF) Superconductor Only s-wave pairing state is possible in DF Weak spin-polarized ferromanget T. Yokoyama, Y. Tanaka, and A.A. Golubov PRB 75 134510 (2007) Fully spin-polarized ferromagnet Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007)

General theory of Proximity effect (diffusive ferromagnet (metal)/ superconductor junctions ) (1) Symmetry of the pair potential Even-frequency spin-singlet even-parity (ESE) Induced pair amplitude in DN ESE + OTE (2) Even-frequency spin-triplet odd-parity (ETO) OTE + ESE ESE (Even-frequency spin-singlet even-parity) ETO (Even-frequency spin-triplet odd-parity) OTE (Odd-frequency spin-triplet even-parity) T. Yokoyama, Y. Tanaka, and A.A. Golubov PRB 75 134510 (2007)

Model and calculation electrode () (), b U x = H x R 0 L R d () = ( ), b U x H x L R x superconductor ( ( ( ( D G1 G1 + i H, G 1 = 0, x x ( H V Usadel equation ( + ( ) h) 0 3 = 0 ( + ( ) h) 3 Diffusive ferromagnet(f) R / R = 0.1 d D h for majority (minority) spin b l << L Diffusion constant quasiparticle energy Exchange field

Parametrization in Usadel Equation Singlet component Triplet component

LDOS s-wave superconductor R / R = 5 E / = 0.01 d b Th h/ E Th = 0 E Th D = h 2 L Thouless energy h/ E Th = 1 LDOS LDOS energy Normal metal 0 L Ferromagnet R d R b Ferromagnet x s-wave PRB 75 134510 (2007)

Pair amplitude in diffusive ferromagnet ESE OTE (ESE state) (OTE state) ESE (Even-frequency spin-singlet even-parity) OTE (Odd-frequency spin-triplet even-parity) Z = 3 Z = 3 R / R = 1 R / R = 0.1 E / = 0.1 d b d b Th 0 L Electrode Ferromagnet S x PRB 75 134510 (2007)

ESE (x=0) OTE (x=0) LDOS (x=0) Z = 3 Z = 3 R / R = 1 R / R = 0.1 E / = 0.1 d b d b Th LDOS at =0 is enhanced, when the odd frequency component (spin-triplet s-wave) is enhanced. Electrode 0 L R d Ferromagnet T. Yokoyama, Y. Tanaka, and A.A. Golubov PRB 75 134510 (2007) R b S x

Ferromagnet (metal)/superconductor junctions Diffusive Ferromagnet (DF) Superconductor Only s-wave pairing state is possible in DF Weak spin-polarized ferromanget T. Yokoyama, Y. Tanaka, and A.A. Golubov PRB 75 134510 (2007) Fully spin-polarized ferromagnet Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007) Only Spin-triplet pairing Is possible

Josephson current in S/HM/S Half metal : CrO 2 Keizer et.al., Nature ( 06) Spin active interface Theory in the clean limit Theory in the diffusive limit Bergeret et. al., PRL( 01), Kadigrobov et. al., Europhys Lett.( 01) Eschrig et. al., PRL( 03) Aasno Tanaka Golubov, PRL( 07)

Lattice model numerical) Furusaki, Physica B( 92), Asano, PRB( 01) Advantages SNS, SFS, S/HM/S Usadel equation is not available!! Parameters Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007) : exchange : spin-flip

Definition of Pairing functions Gor kov Green Function ESE (Even-frequency spin-singlet even-parity) Spin states OTE (Odd-frequency spin-triplet even-parity) Singlet (ESE) hetero spin triplet OTE) equal spin triplet (OTE) Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007)

< J > & J/ < J0 > 0.3 0.0-0.3-0.6-1.0 0.0 0.5 V 1.0 S / t f / fb 3 2 1 (a)sfs: V ex / t = 1 < J > Spin active interface J (c) SFS: V ex / t = 1 < f > f 3 < f > < J > & J/ < J0 > 0.1 0.0-0.1-0.2 0.0 0.5 V 1.0 S / t f / fb 2 1 (b)s/hm/s: V ex / t = 2.5 J < J > (d) S/HM/S: V ex / t = 2.5 < f > < f > SFS, S/HM/S OTE self-averaging No sign change is needed Odd-frequency spin-triplet even-parity SFS 0 1 f 0 10 20 30 j 37 f 0 f3 0 1 10 20 30 37 j S/HM/S only ESE Even-frequency spin-singlet even-parity Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007)

Typical frequency dependence Pairing function B / f 1.0 0.5 0.0-0.5 < f 0 > < f > -1.0-0.5 0.0 0.5 1.0 Even-frequency spin-singlet s-wave (ESE) V ex =0 Odd-frequency spin-triplet s-wave (OTE) n / 0 Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007)

Quasiparticle DOS in HM SFS S/HM/S only even-odd mix pure odd 3 LDOS at j = 37 / 0 n 2 1 S/HM/S SNS ZEP can be detected by STS 0 0.0 0.5 1.0 E / 0 Y.Asano, Y.Tanaka and A.A. Golubov PRL 98, 107002 (2007)

Meissner effect Narikiyo and Fukuyama, J. Phys. Soc. Jpn. 58, 4557 (1989) Belzig Bruder PRB 53 5727 (1996)

Temperature dependence of averaged value of local penetration depth 0.02 0 c d a purely imaginary number for spin-triplet junctions a b 0.02 0 1 Tanaka, et al, PRB 72, 140503R 2005