A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding

Similar documents
A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation

Hitoshi Hirose (1), and Kazuro Hirahara (2) Abstract. Introduction

LETTER Earth Planets Space, 63, , 2011

3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities

Repeating earthquakes and quasi-static slip on the plate boundary east off northern Honshu, Japan

Expansion of aftershock areas caused by propagating post-seismic sliding

Yuta Mitsui 1, Yoshihisa Iio 2, and Yukitoshi Fukahata 2. Earth Planets Space, 64, , 2012

Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA

Additional earthquakes parameters are put in the order of a clock-wise sense geographically, except Sumatra and Java, where they are from west to

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics

A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law

Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

LETTER Earth Planets Space, 63, , 2011

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

The Sanriku-Oki low-seismicity region on the northern margin of the great 2011 Tohoku-Oki earthquake rupture

Title. Author(s)Yomogida, Kiyoshi; Yoshizawa, Kazunori; Koyama, Junj. CitationEarth, Planets and Space, 63(7): Issue Date Doc URL.

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip

Scaling of characterized slip models for plate-boundary earthquakes

MECHANISM OF THE 2011 TOHOKU-OKI EARTHQUAKE: INSIGHT FROM SEISMIC TOMOGRAPHY

Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data

Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data

Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model

Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku oki earthquake (Mw 9.0)

Toru Matsuzawa. Title/Affiliation. Specialized Field

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

I point out two possible paradoxical difficulties in the important target of the IODP in subduction zones, i.e.,

Interpretation of various slip modes on a plate boundary based on laboratory and numerical experiments

Modeling short and long term slow slip events in the seismic cycles of large subduction earthquakes

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Megathrust Earthquakes

Negative repeating doublets in an aftershock sequence

Verification of the asperity model using seismogenic fault materials Abstract

Variability of earthquake nucleation in continuum models of rate-and-state faults and implications for aftershock rates

Tohoku University, Sendai , Japan 3 Seismological Laboratory, California Institute of Technology, Pasadena, California , USA

LETTER Earth Planets Space, 56, , 2004

Migration process of very low-frequency events based on a chain-reaction model

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Rapid magnitude determination from peak amplitudes at local stations

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

Slip-weakening models of the 2011 Tohoku-Oki earthquake and. constraints on stress drop and fracture energy

Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku Earthquake

Megathrust earthquakes: How large? How destructive? How often? Jean-Philippe Avouac California Institute of Technology

Modeling Approaches That Reproduce a Range of Fault Slip Behaviors: What We Have and What We Need Nadia Lapusta. California Institute of Technology

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records

Subduction zone dynamics: role of H 2 O in generation of earthquakes and magmas

A possible scenario for earlier occurrence of the next Nankai earthquake due to triggering by an earthquake at Hyuga-nada, off southwest Japan

A dynamic model of the frequency-dependent rupture process of the 2011 Tohoku-Oki earthquake

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

Study megathrust creep to understand megathrust earthquakes

LETTER Earth Planets Space, 57, , 2005

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake

Numerical study on multi-scaling earthquake rupture

Electrical Conductivity Structures around Seismically Locked Regions

High-frequency rupture properties of the M w 9.0 off the Pacific coast of Tohoku Earthquake

Preparatory process reflected in seismicity-pattern change preceding the M=7 earthquakes off Miyagi prefecture, Japan

Annual Report for Research Work in the fiscal year 2006

Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution

The Mechanics of Earthquakes and Faulting

Shear-wave splitting in a region with newly-activated seismicity after the 2011 Tohoku earthquake

STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF TOHOKU, JAPAN EARTHQUAKE

LETTER Earth Planets Space, 58, , 2006

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0)

Afterslip, slow earthquakes and aftershocks: Modeling using the rate & state friction law

Spatial Correlation of Interseismic Coupling and Coseismic Rupture Extent of the 2011 M\(_W\) = 9.0 Tohoku-oki Earthquake

Synthetic Seismicity Models of Multiple Interacting Faults

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

Dynamic source modeling of the 1978 and 2005 Miyagi oki earthquakes: Interpretation of fracture energy

On the nucleation of creep and the interaction between creep and seismic slip on rate- and state-dependent faults

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

Does Aftershock Duration Scale With Mainshock Size?

Coseismic and postseismic stress rotations due to great subduction zone earthquakes

Supplementary Figure 1 Published rupture models of the Tohoku-oki earthquake that included tsunami data as constraints. Each curve is labeled with

Present-day deformation across the southwest Japan arc: Oblique subduction of the Philippine Sea plate and lateral slip of the Nankai forearc

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka JAPAN

Broadband ground motion simulations of mega-thrust subduction earthquakes based on multi-scale heterogeneous-source model

Friction. Why friction? Because slip on faults is resisted by frictional forces.

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Creep Events Slip Less Than Ordinary Earthquakes. Emily E. Brodsky 1 and James Mori 2

Rate and State-Dependent Friction in Earthquake Simulation

EXAMINATION ON CONSECUTIVE RUPTURING OF TWO CLOSE FAULTS BY DYNAMIC SIMULATION

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes

Splay fault and megathrust earthquake slip in the Nankai Trough

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

THE 2011 OFF THE PACIFIC COAST OF TOHOKU-OKI EARTHQUAKE AND TSUNAMI: INFLUENCE OF THE SOURCE CHARACTERISTICS ON THE MAXIMUM TSUNAMI HEIGHTS

The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions

Imaging of S-wave reflectors in and around the hypocentral area of the 2004 mid Niigata Prefecture Earthquake (M6.8)

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

Transcription:

LETTER Earth Planets Space, 63, 773 777, 2011 A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding Takane Hori 1 and Shin ichi Miyazaki 2 1 Japan Agency for Marine-Earth Science and Technology, Japan 2 Kyoto University, Japan (Received April 8, 2011; Revised June 12, 2011; Accepted June 14, 2011; Online published September 27, 2011) We propose a generation mechanism of a giant earthquake of magnitude (M) 9 in subduction zones where only M = 7 8 earthquakes have been identified and the surroundings of the source areas are sliding aseismically. In an M 9 event, both the M = 7 8 source areas and the surrounding area rupture seismically and the coseismic slip amount is one order larger than that of M = 7 8 earthquakes. To reproduce such behavior, we assume that an M 9 earthquake occurrence is the fundamental rupture mode in the subduction zone, and the M 9 source area is modeled as a large fracture energy area whose nucleation size is comparable to the size of the source area. The M = 7 8 asperities are modeled as smaller fracture energy areas whose nucleation size is smaller than the asperity size. Based on these assumptions, we demonstrate a simple numerical simulation of earthquake generation cycles. The results are qualitatively consistent with the characteristics of the 2011 off the Pacific coast of Tohoku Earthquake and a number of phenomena observed prior to this event. Key words: Earthquake generation cycle, hierarchical asperity model, giant earthquake, aseismic sliding, subduction zone, nucleation size, fracture energy, numerical simulation. 1. Introduction The 2011 off the Pacific coast of Tohoku Earthquake (the 2011 Tohoku Earthquake) with a magnitude (M) of 9.0 occurred in a subduction zone along the Japan Trench (Earthquake Research Committee, 2011). One of the key questions provoked by this event is: How could an M 9 earthquake occur in a subduction zone in which only M = 7 8 earthquakes have occurred repeatedly in the past 100 years (e.g., Yamanaka and Kikuchi, 2004)? It should be noted that the occurrence of M 9 earthquakes cannot be explained by the combined rupture of the M = 7 8 earthquake sources. The slip amount in the M 9 event is one order larger than that in each M = 7 8 event. For example, off Miyagi, the central part of the 2011 Tohoku Earthquake, the slip amount was 1.8 m for the 1978 off Miyagi earthquake (Yamanaka and Kikuchi, 2004) and more than 10 m for the 2011 Tohoku Earthquake (e.g., Iinuma et al., 2011). Although Kanamori et al. (2006) found an accumulation of slip deficit (3/4 of the plate convergence) off Miyagi over the past 70 years, we need to know how such a slip deficit can accumulate and how it can be released seismically. In this letter, we propose a hypothesis to answer the key question posed above, and we demonstrate a conceptual numerical simulation based on our hypothesis. We then discuss the simulation results in comparison with the observations of the 2011 Tohoku Earthquake. Finally, we describe the model predictions, which can be evaluated in light of Copyright c The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. doi:10.5047/eps.2011.06.022 future observation. 2. Model and Simulation Method 2.1 Hierarchical asperity model for M 9 earthquakes We assume that the M 9 earthquake occurrence, which ruptured the entire seismogenic zone, is the fundamental rupture mode in the Japan trench. Furthermore, M 9 earthquakes are assumed to occur intermittently, with recurrence time interval of several hundreds to a thousand years, as indicated by geological data such as tsunami sediments (e.g., Minoura et al., 2001). The key question then becomes: How can M = 7 8 events occur within the source area of an M 9 event during the long-term seismic cycle of M 9 events? Based on the concept of a hierarchical asperity model that was applied to the M 3 sequence within an M 5 asperity off Kamaishi along the Japan trench (Hori and Miyazaki, 2010), we speculate that such events could occur as follows. If the frictional property in the M 9 source area is apparently stable enough, in other words, if the nucleation size is large enough, aseismic sliding occurs during the M 9 earthquake cycle. Such aseismic sliding in an asperity has been discussed in terms of smaller events (e.g., Kato, 2003; Chen and Lapusta, 2009). As a result, the aseismic sliding can load the smaller unstable locked patches within the M 9 source area. If the nucleation size and fracture energy of the patches are much smaller than they are in the rest of the source area, unstable slip occurs on the patches but does not propagate to their outside. This is a mechanism that can account for M < 9 events within the source area of an M 9 event. This mechanism is similar to the foreshock model (Matsu ura et al., 1992). The events on the unstable 773

774 T. HORI AND S. MIYAZAKI: M 9 EARTHQUAKE GENERATION CYCLES patches can occur repeatedly until the accumulated strain energy is sufficient to cause an M 9 event in the entire seismogenic zone, as an unstable slip on a patch triggers the rupture of the area including large fracture energy. Note that similar multi-scale heterogeneity in fracture energy is assumed for the 2011 Tohoku Earthquake in Aochi and Ide (2011) although they focus on the dynamic rupture process. In the following discussion, the unstable patches and the M 9 source area, including the unstable patches, are called regular asperities and hyper asperity, respectively. The source area outside the regular asperities is called a conditional asperity, since in this area both aseismic sliding and seismic slip occur, depending on the stress and fault strength conditions. To demonstrate the above-mentioned phenomena, we set up a numerical model for earthquake cycles based on a quasi-dynamic force equilibrium and the rate- and statedependent friction law, as reported by Rice (1993). As a friction law, we used a composite law proposed by Kato and Tullis (2001). In the framework of the rate- and statedependent friction law, the nucleation size and fracture energy are proportional to the state evolution length dc (Rubin and Ampuero, 2005). Hence, we model the asperity distribution via the heterogeneous distribution of dc, as in Hillers et al. (2006). We use the friction law as a mathematical model for fault friction. This model describes the relationships among slip velocity, shear stress in the slip direction and fault strength (Nakatani, 2001). The model also addresses the strength evolution of slip weakening and logarithmic healing. From this viewpoint, the state evolution length dc controls the scale of weakening and healing, and its value should be chosen so as to reproduce the behavior of M 9 earthquake cycles. The dominant physical processes involved in weakening, such as thermal pressurization, and in healing, such as pressure solution, are another important dimension of this problem, but these questions lie outside the scope of this letter. 2.2 Model setup We consider a planar dipping fault in an elastic half space in which the upper edge reaches the free surface. We show the spatial distributions of frictional parameters A B (A = aσ, B = bσ ) and dc in Fig. 1, where a, b and dc are the frictional parameters and σ is the effective normal stress. Based upon rock friction experiments, A B primarily depends on temperature and hence depends on depth, and dc increases where the temperature is high under wet conditions (Blanpied et al., 1998). The area of A B < 0 (velocity weakening in steady state) is the seismogenic zone here. dc also has a larger value in the shallower part of the fault (Hillers et al., 2006). For the sake of simplicity, A is assumed to be constant on the entire fault. Parameters B and dc are, hence, assumed to depend on depth. dc is large enough in conditional asperity to become conditionally stable (e.g., Boatwright and Cocco, 1996). Thus, the entire seismogenic zone is modeled as one large hyper asperity. Of course, this is an over-simplification, and it results in simple recurrence of the entire seismogenic zone rupture for an M 9 event, a virtually homogeneous slip distribution in the strike direction, a positive stress drop Fig. 1. Spatial distributions of frictional parameters (a) A B and (b) dc on the model fault. Crosses indicate the cumulative slip shown in Fig. 2. Fig. 2. Temporal variation of slip at the points shown in Fig. 1. x and d are strike and depth in Fig. 1. Vpl is the plate convergence rate (0.05 m/yr). Arrows indicate the timing of images shown in Fig. 3. in the entire M 9 source area, no M < 9 aftershock occurrence in and just around the source area, and so on. To introduce such realistic complexity associated with an M 9 event, which is achieved by including heterogeneity in A B and dc, will be the next step in our study. For the sake of simplicity, we set only two regular asperities whose radii are about 50 km in the seismogenic zone, even as there are more similar size asperities and also much smaller asperities in the Tohoku subduction zone. The model is a simple and conceptual one and is not intended for any specific subduction zone. The distribution and size of the regular asperities significantly affect the entire rupture patterns and the recurrence time intervals. However, qualitative characteristics, such as M < 9 event occurrence within the M 9 source area shown below, can be reproduced in many cases that have a different size and distribution of regular asperities. In such cases, dc in the regular asperity should be one order or more smaller than it is in the con-

T. HORI AND S. MIYAZAKI: M 9 EARTHQUAKE GENERATION CYCLES 775 Fig. 3. From (a) to (m) show spatio-temporal variations in the stress and slip velocity on the fault. Blue, white, yellow-green and red colors for the slip velocity correspond to locking, slip with plate convergence rate, aseismic slip (faster than the plate convergence rate) and seismic slip, respectively. Numerals attached to the arrows indicate the time intervals between two successive snapshots. (n) shows coseismic slip distribution and the moment magnitude for EQ1 and EQ5. ditional asperity. This order difference in dc is consistent with the idea of scaling in slip weakening distance (e.g., Ide and Aochi, 2005). A detailed description of the model parameters and simulation method is provided in Hori et al. (2009). 3. Results and Discussion 3.1 Slip history at selected points In order to visualize the behavior of the entire earthquake cycle, the slip history at a number of sampling points is shown in Fig. 2. The points are at the same depth as those indicated in Fig. 1. In addition, the distribution of the coseismic slip, whose velocity is higher than 0.01 m/s, is shown for EQ1 and 5 in Fig. 3(n). On the regular asperities, earthquakes occur repeatedly (x = 200, 400 in Fig. 2). The slip amount is more than 5 times larger in the entire rupture area (giant earthquakes, EQ0, 5) than in the cases of rupture for each regular asperity (regular earthquakes, EQ1 4). This is consistent with the difference in slip amount for the 1978 off Miyagi earthquake and the 2011 Tohoku Earthquake. The maximum slip is 53 m for EQ5 and the larger slip can be seen in the shallower part of the fault (Fig. 3(n)). This is consistent with one of the characteristics of the 2011 Tohoku Earthquake, namely the several-tens-of-meters slip along the Japan trench axis (e.g., Maeda et al., 2011). Because the fault plane cut the free surface in our model, there was no loading source shallower than the fault plane. Hence, the slip deficit accumulated more easily than it did in the deeper portion of the seismogenic zone, which was loaded by the aseismic sliding to a deeper extent. In addi- tion, since the state evolution length dc is large in the shallower part, slip cannot easily be triggered by M < 9 events. Furthermore, when seismic slip occurs in an M 9 event, the free surface enhances the sliding. These factors can explain the observed large slip near the surface in our model. On the other hand, in the conditional asperity (x = 100, 300, 500 in Fig. 2), nearly constant aseismic slip and afterslip appear, as well as large coseismic slip and a locked state, depending upon the stage in the M 9 earthquake cycle. Such slip pattern variation can also be reproduced in the velocity-strengthening area with constant dc (Kaneko et al., 2010). Our model and their model are end-members of the heterogeneity in A B and dc. We believe that the actual subduction plate boundary has the properties between them. After EQ1 or 2, aseismic sliding appears whose slip velocity is 34 62% of the plate convergence rate. The southern half of the source area of the 2011 Tohoku Earthquake showed aseismic sliding with a velocity that was less than 50% of the convergence rate estimated from small repeating earthquakes between 1993 and 2007 (Uchida et al., 2009). In this area, coseismic slip also occurred in the 2011 Tohoku Earthquake, though the slip amount was relatively small (e.g., Yoshida et al., 2011). 3.2 Space-time evolutions of slip velocity and shear stress Images showing spatio-temporal variations in slip velocity and shear stress are presented in Fig. 3. The entire area of hyper asperity is locked after an M 9 event. An image of the slip velocity for 47 years following the M 9 event is shown in Fig. 3(a). During the interseismic period, the

776 T. HORI AND S. MIYAZAKI: M 9 EARTHQUAKE GENERATION CYCLES locked area shrinks and the aseismic slip area spreads. The shear stress becomes higher along the edge of the locked area. When the aseismic slip area reaches the bottom of a regular asperity, the rupture begins (Fig. 3(b), EQ1). The rupture propagates within the regular asperity but decelerates beyond its boundaries (Fig. 3(c)). After the event, afterslip occurs around the asperity, especially in its deeper part (Fig. 3(d)). After EQ2, both asperities and their surrounding areas again become locked (Fig. 3(e)). Note that the total locked area is smaller than it was after an M 9 event (Fig. 3(a)). After the aseismic slip reaches the regular asperity again, other regular earthquakes (EQ3, 4) and afterslip occur (Fig. 3(f, g, h)). It should be noted that afterslip spreads more widely in this case than it does following the former regular earthquakes (compare Fig. 3(d, h)). Such large afterslip areas for M = 6 7 events was observed from 2005 to 2010 along the landward side of the M 9 source area (Suito et al., 2011). Since the wide afterslip in our model is caused by the higher stress level before an M 9 event, the observed afterslip is possibly a year-order precursor of the 2011 Tohoku Earthquake. Furthermore, the wide afterslip area in our model decelerated and again became locked, as shown in Fig. 3(i). In other words, the afterslip does not accelerate to produce the M 9 event as a preslip. This result is also consistent with the data. The locked area shrinks further (compare Fig. 3(e, i)). When aseismic slip reaches the regular asperity for the third time, the stress level around the regular asperity is fairly high (Fig. 3(j)). Thus, the rupture does not decelerate outside the regular asperity and becomes an M 9 event (Fig. 3(k), EQ5). As shown in Fig. 3(j), the initiation of the M 9 event is triggered by the rupture of a regular asperity, similar to the case of M 7 events (Fig. 3(b, f)). Thus, a large preslip is not necessarily observed. Actually, no preslip larger than moment magnitude 7.3 is observed near the hypocenter of the 2011 Tohoku Earthquake (Hirose, 2011). On the other hand, it is important to examine whether or not the initial rupture of the 2011 Tohoku Earthquake corresponds to an asperity that was previously identified in this area. In backward projection analyses (e.g., Wang and Mori, 2011), an initial rupture was identified in the first 40 seconds northwest of the hypocenter. This suggests that one of the asperities off Miyagi ruptured first. After the M 9 event, the shallower part and the area in and around the regular asperities become locked first, and afterslip occurs in the surrounding area (Fig. 3(l)). Such spatio-temporal variations in the recovery of a locked state in the source area of the 2011 Tohoku Earthquake can be examined by analyzing the small repeating earthquake distribution, and more directly, by analyzing the seafloor deformation, as observed using ocean-bottom pressure gauges. One of the key issues here is whether or not a shorter recovery time was observed in past asperities and near the trench axis. More than a year after the M 9 event, the entire seismogenic zone is locked and afterslip continues in the deeper parts (Fig. 3(m)). Since our simulation deals with quasi-dynamics, we cannot estimate the rupture propagation velocity quantitatively (Lapusta and Liu, 2009). However, large d c in the conditional asperity results in a lower weakening rate, and hence in slower rupture propagation than in ordinal events. This is consistent with the slow rupture velocity estimated for the 2011 Tohoku Earthquake (e.g., Wang and Mori, 2011). Although the weakening rate during the coseismic rupture has not yet been estimated, our model predicts a higher and lower weakening rate in the regular and conditional asperities, respectively. This is another validation of our hierarchical asperity model and the friction law we have used here. Acknowledgments. We thank the editors and two anonymous reviewers for constructive comments that improved this manuscript. We also thank Editage for their English editing and comments. This work is partly supported by the MEXT project, Evaluation and disaster prevention research for the coming Tokai, Tonankai and Nankai earthquakes. References Aochi, H. and S. Ide, Conceptual multi-scale dynamic rupture model for the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, this issue, 761 765, 2011. Blanpied, M. L., C. J. Marone, D. A. Lockner, J. D. Byerlee, and D. P. King, Quantitative measure of the variation in fault rheology due to fluid-rock interaction, J. Geophys. Res., 103, 9691 9712,1998. Boatwright, J. and M. Cocco, Frictional constraints on crustal faulting, J. Geophys. Res., 101, 13895 13909, 1996. Chen, T. and N. Lapusta, Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model, J. Geophys. Res., 114, B01311, doi:10.1029/2008jb005749, 2009. Earthquake Research Committee, The 2011 off the Pacific coast of Tohoku Earthquake, Monthly Reports on Evaluation of Seismic Activity in Japan, http://www.jishin.go.jp/main/index-e.html, March 13, 2011. Hillers, G., Y. Ben-Zion, and P. M. Mai, Seismicity on a fault controlled by rate- and state-dependent friction with spatial variations of the critical slip distance, J. Geophys. Res., 111, B01403, doi:10.1029/2005jb003859, 2006. Hirose, H., Tilt records prior to the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, this issue, 655 658, 2011. Hori, T. and S. Miyazaki, Hierarchical asperity model for multiscale characteristic earthquakes: A numerical study for the off? Kamaishi earthquake sequence in the NE Japan subduction zone, Geophys. Res. Lett., 37, L10304, doi:10.1029/2010gl042669, 2010. Hori, T., S. Miyazaki, and N. Mitsui, A model of earthquake generation cycle with scale dependent frictional property Preliminary results and research plan for the project of evaluation for the coming Tokai, Tonankai and Nankai earthquakes, J. Disaster Res., 4, 111 117, 2009. Ide, S. and H. Aochi, Earthquakes as multiscale dynamic rupture with heterogeneous fracture surface energy, J. Geophys. Res., 110, B11303, doi:10.1029/2004jb003591, 2005. Iinuma, T., M. Ohzono, Y. Ohta, and S. Miura, Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data Was the asperity in Miyagi-oki ruptured?, Earth Planets Space, 63, this issue, 643 648, 2011. Kanamori, H., M. Miyazawa, and J. Mori, Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms, Earth Planets Space, 58, 1533 1541, 2006. Kaneko, Y., J.-P. Avouac, and N. Lapusta, Towards inferring earthquake patterns from geodetic observations of interseismic coupling, Nature Geosci., doi:10.1038/ngeo843, 2010. Kato, N., Repeating slip events at a circular asperity: Numerical simulation with a rate- and state-dependent friction law, Bull. Earthq. Res. Inst. Univ. Tokyo, 78, 151 166, 2003. Kato, N. and T. E. Tullis, A composite rate- and state-dependent law for rock friction, Geophys. Res. Lett., 28, 1103 1106, 2001. Lapusta, N. and Y. Liu, Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip, J. Geophys. Res., 114, B09303, doi:10.1029/2008jb005934, 2009. Maeda, T., T. Furumura, S. Sakai, and M. Shinohara, Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, this issue,

T. HORI AND S. MIYAZAKI: M 9 EARTHQUAKE GENERATION CYCLES 777 803 808, 2011. Matsu ura, M., H. Kataoka, and B. Shibazaki, Slip-dependent friction law and nucleation processes in earthquake rupture, in Earthquake Source Physics and Earthquake Precursors, edited by T. Mikumo, K. Aki, M. Ohnaka, L. J. Ruff, and P. K. P. Spudich, Tectonophysics, 211, 135 148, 1992. Minoura, K., F. Imamura, D. Sugawara, Y. Kono, and T. Iwashita, The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan, J. Natural Disaster Sci., 23, 83 88, 2001. Nakatani, M., Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology, J. Geophys. Res., 106, 13347 13380, 2001. Rice, J. R., Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98, 9885 9907, 1993. Rubin, A. M. and J.-P. Ampuero, Earthquake nucleation on (aging) rate and state faults, J. Geophys. Res., 110, B11312, doi:10.1029/ 2005JB003686, 2005. Suito, H., T. Nishimura, M. Tobita, T. Imakiire, and S. Ozawa, Interplate fault slip along the Japan Trench before the occurrence of the 2011 off the Pacific coast of Tohoku Earthquake as inferred from GPS data, Earth Planets Space, 63, this issue, 615 619, 2011. Uchida, N., J. Nakajima, A. Hasegawa, and T. Matsuzawa, What controls interplate coupling?: Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone, Earth Planet. Sci. Lett., 283, 111 121, 2009. Wang, D. and J. Mori, Rupture process of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) as imaged with back-projection of teleseismic P-waves, Earth Planets Space, 63, this issue, 603 607, 2011. Yamanaka, Y. and M. Kikuchi, Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, J. Geophys. Res., 109, B07307, doi:07310.01029/02003jb002683, 2004. Yoshida, Y., H. Ueno, D. Muto, and S. Aoki, Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data, Earth Planets Space, 63, this issue, 565 569, 2011. T. Hori (e-mail: horit@jamstec.go.jp) and S. Miyazaki