Study aid -1. Google each object,

Similar documents
Astronomy C. Madison Brady

Physics HW Set 3 Spring 2015

Science Olympiad Astronomy C Division Event MIT Invitational

Physics Homework Set 2 Sp 2015

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Comparing a Supergiant to the Sun

Stars and Galaxies 1

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Stars with Mⵙ go through two Red Giant Stages

Beyond Our Solar System Chapter 24

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

PHYS103 Sec 901 Hour Exam No. 3 Page: 1

Recall what you know about the Big Bang.

the nature of the universe, galaxies, and stars can be determined by observations over time by using telescopes

Stellar Astronomy Sample Questions for Exam 4

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS103 Sec 901 Hour Exam No. 3 Practice Version 1 Page: 1

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

NSCI 314 LIFE IN THE COSMOS

ASTRONOMY 1 EXAM 3 a Name

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Stars & Galaxies. Chapter 27 Modern Earth Science

Astro 1050 Fri. Apr. 10, 2015

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

Stars and their properties: (Chapters 11 and 12)

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution: Outline

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

Supernovae, Neutron Stars, Pulsars, and Black Holes

Abundance of Elements. Relative abundance of elements in the Solar System

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr.

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram?

L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere

Stellar Evolution - Chapter 12 and 13. The Lives and Deaths of Stars White dwarfs, neutron stars and black holes

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Guiding Questions. Stellar Evolution. Stars Evolve. Interstellar Medium and Nebulae

Properties of Stars. Characteristics of Stars

Astronomy 104: Second Exam

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Ch. 16 & 17: Stellar Evolution and Death

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Astronomy C UT Regional, Spring 2018 Contact: Dhruva Karkada,

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

ASTRONOMY QUIZ NUMBER 11

Life Cycle of a Star - Activities

Life and Death of a Star 2015

Review: HR Diagram. Label A, B, C respectively

Earth Science, 13e Tarbuck & Lutgens

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

Review Questions for the new topics that will be on the Final Exam

AST 101 Introduction to Astronomy: Stars & Galaxies

Chapter 14: The Bizarre Stellar Graveyard

PHYS 160 Astronomy Take-home Test #4 Fall 2017

Science Olympiad UW- Milwaukee Regional. Astronomy Test

Prentice Hall EARTH SCIENCE

1 The Life Cycle of a Star

StarTalk. Sanjay Yengul May "To know ourselves, we must know the stars."

PENNSYLVANIA SCIENCE OLYMPIAD STATE FINALS 2012 ASTRONOMY C DIVISION EXAM APRIL 27, 2012

The Bizarre Stellar Graveyard

29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Astro Fall 2012 Lecture 8. T. Howard

The Stellar Graveyard Neutron Stars & White Dwarfs

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

10/29/2009. The Lives And Deaths of Stars. My Office Hours: Tuesday 3:30 PM - 4:30 PM 206 Keen Building. Stellar Evolution

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Name Date Period. 10. convection zone 11. radiation zone 12. core

Clicker Questions (chapters 6-18)

Chapter 28 Stars and Their Characteristics

Astronomy C Captains Tryouts

AST 2010: Descriptive Astronomy EXAM 2 March 3, 2014

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19

CHAPTER 29: STARS BELL RINGER:

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

Objectives. HR Diagram

Evolution of Stars Population III: Population II: Population I:

CHAPTER 28 STARS AND GALAXIES

2019 Astronomy Team Selection Test

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

Transcription:

2018 Div. C (High School) Astronomy Help Session Sunday, Feb. 18 th, 2018 Stellar Evolution and Type II supernovae Scott Jackson Mt. Cuba Astronomical Observatory 1 SO competition on March 3rd. Resources two computers or two 3 ring binder or one laptop plus one 3 ring binder Programmable calculator Connection to the internet is not allowed! Help session before competition at Mt. Cuba Astronomical Observatory

2

3 Google each object, Study aid -1 Know what they look like in different parts of the spectrum. For example, the IR, optical, UV and Xray Understand what each part of the spectrum means Have a good qualitative feel for what the object is doing or has done within the astrophysical concepts that the student is being asked to know.

4 Study aid - 2 Know the algebra behind the physics Just because you think you have the right equation to use does not mean you know how to use it!!! Hint for math problems: Solve equations symbolically BEFORE you put in numbers. Things tend to cancel out including parameters you do not need to have values for. Know how to use scientific notation.

5 The test 2 parts Part 1 multiple choice and a couple fill in the blanks Part 2 word problems for astrophysics there will be some algebra Solve the equations symbolically first then put in numbers!!!! Hint: most problems will not need a calculator if done this way

Topics - 1 Stellar evolution, including - stellar classification, - spectral features and chemical composition, - H-R diagram transitions, - Accretion disks - Main sequence stars - HII regions - red supergiant giants, - Cepheids - Semiregular variales - Luminous blue variables - hypergiants, Wolf-Rayet stars, Neutron stars - Magnetars, pulsars, stellar mass black holes - Eclipsing binaries, X-ray and gamma-ray binary systems - Type II supernovas Kepler's laws as they apply to binary star systems, Distance latter in the universe, calculating distance and distance modulus Know about specific objects

7

RCW 103, - supernovae remnant with young magnetar slow pulsar or binary IC 443 Jelly fish nebulae from a supernova explosion Alpha Orionis The brightest star in the constellation Orion, Betelgeuse RSG HR 5171 A V766 Centauri, a hypergiant star in a triple star system aout 12,000 ly away SN W49B a supernova remnant in the constellation Aquila ASASSN-15lh, Supernova SN-15lh likely hypernova or a nova from a magnatar AG Carinae, Star in Constellation Carina. Shedding mass at huge rate, LBV S Doradus, - Bright star in the Large Magellenic Cloud LBV SN 1987A, SuperNova that occurred in 1987 in the large Magellenic Cloud Geminga, -Rapidly rotating neutron star pulsar in Gemini NGC 6357 Diffuse nebula in Scorpius. Many new stars: OB association NGC 7822, Star forming region in Cepheus: OB association M82 X-2, Xray pulsar in the galaxy M82. PSR B0355+54 Pulsar in the constellation Camelopardalis DEM L241, Supernova remnant in the large Magellanic Cloud Circinus X-1 X-ray binary system in Circinus 8

RCW 103, -Supernova remnant, contains a supernova remnant that is a magnetar (Neutron star with powerful magnetic fields and a very slow pulsar (rotating neutron star in this case rotating once every 6.5 hours pulsars usually take less than a second to rotate) - Other possibility: A binary system with a companion orbiting a normal pulsar every 6.5 hours - Located about 9000 ly (light years) from earth. - Magnetar is only one of 30 known age estimated to be 2000 years old too young for pulsar to slow down to a period of 6.5 hours 9

IC 443 Jellyfish Nebula 5000 ly from earth Contains a pulsar with a jet and a ring 10

Alpha Orionis High mass star, several million years old, at the end of its life. Expected to explode as a Type II supernova soon In the red supergiant (RSG) stage now. 12 to 17 solar masses. First star to have its surface imaged. Tsurface ~ 3400 K. Star is 4.5 au in diameter -- Would almost go out to Jupiter It is surrounded (right) by a large (400 au in diaeter) nebula of gas and dust. 11

HR 5171 A in the constellation Centaurus, around 12,000 light years from Earth. It is either a red supergiant or recent post-red supergiant yellow hypergiant, and one of the largest known stars. 12,000 ly away. May be 1,300 times the diameter of the sun 50% larger than Betelgeuse Part of a binary system with the companion believed to be touching the main stars surface 12 UV light showing tail

SN W49B Type II Supernova remnant May have left behind a back hole and not a pulsar May be the youngest black hole in the Xray Milky Way. Supernova occurred around 17,000 to 21,000 years ago. Odd nebula caused by material ejected out the poles instead of the equator 13 Composite Infared

ASAS-SN-15lh Supernova discovered using the All-Sky Automated Survey for Supernova. Intrinsically the brightest supernova yet observed 570 billion x sun. Considered a hypernova Z (redshift)=0.2326 [1171 megaparsecs away] 14

AG Carinae, Luminous blue variable star (LBV) came from a star around 50x the mass of the sun. Also known as HD94910 20,000 ly away. May become a Wolf-Rayet star. Loosing a huge amount of mass due to its very strong solar wind pushing the material way from the star and making the nebula you see surrounding the star 15 Radio Visible (HST)

S Doradus One of the most luminous stars known. 1 million x the sun s luminosity In constellation of Dorado. Luminous Blue Variable star. Lies in open cluster called NGC 1910. It is variable (below) and is in an instability strip (Next slide) 16 Light curve

S Doradus LBV are variable due to dense solar wind that creates a falsely large star. That solar wind dissipates and the brightness drops Apparent radius of the star changes from 100x to 380 x our sun. Most will eventually become Type II SN 17 6.5-6- 5.5- Log Luminosity Zero Age main sequence 32,000K Log Temperature 10,000K 3,200K

SN 1987A, Type II supernova. Shock wave from the exploding star smashes into a ring of material and caused the ring to brighten. Ring of material was made before the supernova happened during the time when the star had strong solar winds. Ring is about 1 light year in diameter. Ring is 20,000 years old -- in Large Magellanic Cloud 18

Geminga Remnant of a supernova that occurred 300,000 years ago. Pulsar with a period of 0.24 seconds. Originally observed as an unknown gamma ray source. 250 parsecs away (Gemina Gamma-ray source). Very high proper motion (speed) Through our galaxy Once believed that a bubble around Our solar system came from Geminga 19

NGC 6357 New star forming region in Scorpius. HII region ionized hydrogen region hydrogen being ionized from strong radiation form the new stars. 5500 light years away. OB association of stars 20 X-ray Composite

NGC 7822 Star forming region in Cepheus. 800 to 1000 parsecs away. Includes one of the hottest nearby stars known : a massive type O stars surface temperature of 45000K, luminosity of ~100,000x our sun. another OB association 21

22

M82 X-2 Very bright X ray source in the M82 galaxy in the constellation of Urasa Major. A neutron star comsuming material from an adjacent star. Brightness limited by Eddington Luminosity Radiation pressure balances Gravitational forces 23 Flow of material to white dwarf

PSR B0355+54 Pulsar in the constellation Camelopardalis 3460 light years away. Period is 0.715 seconds. 5 million years old. Pusar is moving through interstellar media and generating a high energy tails (see in Xrays) by the Chandra xray satellite. Pulsar wind nebula https://arxiv.org/pdf/1610.06167.pdf 24

DEM L241, A star that survived a supernova explosion. System contains a neutron star or black hole and a massive companion star. Supernova remnant is DEM L241. IN the large Magellanic Cloud The progenitor star was likey 25x to 40x the mass of the sun. 25 Visible X-ray Composite

Circinus X-1 X ray (Neutron) star with a second star (binary system). Shows X-ray jets that are seen in black hole systems. Young X-ray binary system. Less than 4600 years old. In the constellation Circinus ~9400 parces away 26 radio Visible+Xray+ radio X-ray

Circinus X-1 X ray (Neutron) star Visible 27 Light Echos from outbursts reflected in nebulae Visible+Xray X-ray

28

Brightness of Stars Brightness measured as luminosity or magnitude Luminosity is the total energy output of a star Depends on size and surface temperature Usually measure relative to our sun, e.g., 4 times our sun. A star s magnitude is the logarithm of its luminosity Apparent magnitude (m) [what we see] is determined by four factors Its temperature or color (wattage of a light bulb) Its size How far away it is If it is obscured by dust (extinction) Absolute magnitude (M) Magnitude of a star when viewed from a fixed distance Most abs magnitudes will be a negative number (bright) 29

Brightness of a star: A star s magnitude Magnitude is more often used to describe an objects brightness. The higher the magnitude the dimmer the object. The apparent magnitude of our sun is -26.7 The apparent magnitude of a full moon is -12.6 The apparent magnitude of the Sirius is ~ -1 Dimmest star you see (in Wilmington) ~+3.5 Dimmest star you see in a dark sky location ~+5.5 The absolute magnitude is the magnitude of the star / object if it was place a fixed distance away (10 parsecs -- later). The absolute magnitude of our sun is ~ +4.8 30

O B SPBs Slowly Pulsating B type stars - WR: Wolf Rayet stars - DBV: Dwarf B variables - DAV: Dwarf A variables A F G Our sun G2, M=4.8 K M - red SR: SemiRegular L Red Dwarfs (failed stars) T Brown Dwarfs (failed stars) Spectral class of stars WR 31

Categorizing stars by their spectra 1. Spectra can tell you the stars approximate temperature (blackbody radiation) 2. Absorption (dark) lines in a star s spectra give a finger print of elements that are seen in that spectral class of stars BUT emission spectra (bright lines against a dark background) are given off by nebulae glowing gas clouds 32

Spectral class of stars He+ lines H Balmer lines (B,A & F stars) Ca+ lines (F & G stars) Fe and neural metals K & M stars) TiO2 lines 33

Spectral classification & Temperature of main sequence stars Star Spectral Class Proportion of Stars Surface Temperature ( F) Star Mass (Sun = 1.0) Star Luminosity (Sun = 1.0) Lifespan (Billions of Years) Example Star A0 1% A0 - A9 20,000 2.8 60 0.5 Vega A1 --- 18,400 2.35 22 1.0 Sirius A5 --- 15,000 2.2 20 1.0 --- F0 3% F0 - F9 13,000 1.7 6 2.0 --- F5 --- 12,000 1.25 3 4.0 Procyon A G0 9% G0 - G9 11,000 1.06 1.3 10 --- G2 --- 10,600 1.00 1.0 12 Sun Alpha Centauri A G5 --- 10,000 0.92 0.8 15 --- K0 14% K0 - K9 9,000 0.80 0.4 20 Alpha Centauri B K2 --- 8,700 0.76 0.3 24 Epsilon Eridani K5 --- 8,000 0.69 0.1 30 61 Cygni A M0 73% M0 - M9 7,000 0.48 0.02 75 --- M5 --- 5,000 0.20 0.001 200 Proxima Centauri 34 (Alpha Centauri C)

35

More on stars spectral class 36

Hertzsprung-Russell Diagram http://outreach.atnf.csiro.au/education/senior/cosmicengine/stars_hrdiagram.html D are white dwarfs (super hot carbon stars) L T Y axis is always brightness or relative luinosity X axis is always temperature, color or spectral class Each dot is a star 37 A is the location of our sun on the main sequence B are red giant stars that are fusing helium in their core C are red supergiants with Helium and Hydrogen buring in shells and carbon in its core

Instability gaps on an H-R diagram for the pulsating class of variable stars 38 Period of pulses scale with absolute brightness of the star Period-luminosity relationship http://outreach.atnf.csiro.au/education/senior/astrophysics/variable_pulsating.html

Where does the S Doradus instability gap reside? 39 Upper right hand corner!!! http://outreach.atnf.csiro.au/education/senior/astrophysics/variable_pulsating.html

Accretion disks Circumstellar disks Many accretion disks seen in binary star systems when one star hass filled its Roche limit and is having material sucked away from it to a companion star HR 5171 A and likely M82 X-2 http://planetquest.jpl.nasa.gov/documents/rdmp272.pdf

Birth of a solar mass star

42 The birth of a 1 solar mass star going onto the main sequence. Before point 4, contraction of intersteller gas cloud. The cloud heats up as it contracts, causing its luminosity to increase -- we don t see it because the protostar is hidden in dust. From point 4 to 6, -- The cloud contracts more and its luminosity drops. Point 6, hydrogen starts to fuse to helium in the stars core. The heat generated from fusion balances gravity. The star s surface heats up slightly. This is the location of T Tauri stars Point 7. The star has reached a long lived equilibrium where the heat from fusing hydrogen to helium balances gravity. The star resides on the main sequence for most of its life (~10 billion years for a 1 solar mass star).

Death of main sequence stars

Red Giant for lower mass stars Low mass star like our sun stops at carbon formation in its core...

And fluffs off its outer layers to make a planetary nebulae and a white dwarf star.

Red super Giant for higher mass stars But a high mass star, like those in the early universe had enough mass to fuse nuclear material all the way to iron. However, once iron accumulates in its core no net energy generation can be done by fusion of iron, gravity takes over and core collapse occurs and...

Electrons are pushed into protons making neutrons and a flood of neutrinos. It goes boom!!!!... A supernovae!!! (this is the Crab Nebulae) Which make lots of heavy elements needed to make terrestrial (earth like) planets. This is NOT a type 1a supernovae. It is a type II supernovae.

.. And it spreads heavy elements throughout space to be picked up by a new generation of stars,...

.. The shock wave either from the supernovae or from the initial star formation stage can initiate new star formation,...

Before they ultimately die, high mass stars go through a red supergiant stage During this time they may have very strong solar wind and shed a lot of its mass. like AG Carinae and Betelgeuse The strong solar wind may also make the star appear larger (and hence brighter) than normal like S Doradus --LBV 50

Stars and planets approximate black body radiators The wavelength at maximum radiation changes with temperature λ max = 550 nm 5300 K temperature for our sun. G type star (subclass 2 ) or G2 λ max x Temperature = constant = 2.9x10 6 nm- K Or = 2.9x10 7 A- K = 2.9x10 3 μm-k Nm[=] nanometers for wavelength Or A [=] Angstrom units for wavelength Or μm [=] microns units for wavelength K [=] degrees Kelvin 51

Another way to look at black body radiation Plot log λ (x axis) vs log of spectral intensity at that λ

Example calculation for a star s temperature So the shorter the wavelength the hotter or colder the star???? λ max ~ 0.9 μm What it the star s temperature? T ~ 2.9x10 3 μm-k / 0.9 μm = 3200 K (M type star) λ max x Temperature = constant = 2.9x10 6 nm- K Or = 2.9x10 7 A- K = 2.9x10 3 μm-k Nm[=] nanometers for wavelength Or A [=] Angstrom units Or μm [=] microns units K [=] degrees Kelvin If λ max ~ 10 μm What it the star s temperature? T ~ 2.9x10 3 μm-k / 10 μm = 290 K (black dwarf) 53

What is the temperature of an object emmitting x-rays or gamma rays? * temperature = 2.9x10 6 nm- K If is 1 nm (soft xrays) then Temperature = 2.9 million degrees(!) What is max for an O type star? T~ 40,000 K max ~72 nm it shines in the ultraviolet light!!! We can still see it in visible light because part of its light is there. What is max for Betelgeuse? T~3400K max ~ 850 nm or 0.85 mm 54

Neutron stars When higher mass stars die gravity takes over and the core of the star collapses. Electron degeneracy pressure is overcome and electrons are pushed into the protons to form neutrons (and a flood of neutrinos that give rise to a supernovae). Initial angular momentum will be distributed between the supernovae remnant and the resulting neutron star. The angular momentum of the neutron star can cause it to spin very quickly creating a pulsar. Strong magnetic fields can focus a beam of radiation like a light house Pulsars can have an accretion disk (from the blown off remnant of the star) that generates x-rays as matter is accelerated to near the speed of light as it falls into the neutron star. 55

Mass of the main sequence star is reduced as it evolves and dies. Material is shed either during the formation of a planetary nebulea (white dwarf) or during a supernovae. The supernovae in this diagram are meant to be Type II and not Type Ia. 56

HII regions Luminous Blue variables Wolf-Reyet stars Hypergiants, Magnetars Topics - 2 Use Kepler s laws of rotation and circular motion to answer questions relating to the orbital motions of binary systems; use parallax, spectroscopic parallax, type Ia SN and the distance modulus and Hubble s law to calculate distances.

HII regions Generally star forming regions in the galaxy where hot new stars have ionize hydrogen causing it to glow. NGC 6357 and NGC 7822 Luminous Blue Variables (LBV), Red supergiants (RSG) and Wolf-Rayet stars (WR). Evolved from Main Sequence OB stars [O type stars or early B type stars]. Very massive stars that are formed in groups call OB associations. Lots of UV radiation emitted. High mass Slower spin Main Sequence Fast spin & mass loss & mass loss RSG O stars LBV S Doradus variables Type II SN WR 58

Wolf Rayet stars Hot massive stars at the end of their life shows broad emmission lins of ionized helium, nitrogen or carbon. Strong stellar winds, Surface temperatures 30,000 K to 200,000K Slower spin & mass loss RSG Main Sequence Spectra of a W-R star Type II SN 59

Magnetars Neutron star with a very strong magnetic field. X-ray and gamma ray emmisions. RCW 103 Hypergiants Extremely high luminosity and high mass loss caused by stellar winds. Largest stars known. HR 5171 A may be a hypergiant star 60

Kepler s laws gold standard for weighing stars 1. Orbits are ellipses with sun at one focus 2. Equal areas swept out in equal time 3. Harmonic law: Square of the period (P) is proportional to the cube of the semimajor axis (a). -- Gold standard for determining masses in the universe exoplanets and binary stars. Kepler s law P 2 = a 3 / (m 1 + m 2 ) P = orbital period (years) a = Distance between the two bodies (expressed in astronmical units [AU] distance from earth to sun) 1 AU = 107.5 sun diameters or 215 sun s radius m 1, m 2 = mass of the two bodies orbiting each other (solar masses) 61

Measuring Distances Brightness of stars 62

Brightness of Stars Brightness measured as luminosity or magnitude Luminosity is the total energy output of a star Depends on size and surface temperature Usually measure relative to our sun, e.g., 4 times our sun. A star s magnitude is the logarithm of its luminosity Apparent magnitude (m) [what we see] is determined by four factors Its temperature or color (wattage of a light bulb) Its size How far away it is If it is obscured by dust (extinction) Absolute magnitude (M) Magnitude of a star when viewed from a fixed distance Most abs magnitudes will be a negative number (bright) 63

Brightness of a star: A star s magnitude Magnitude is more often used to describe an objects brightness. The higher the magnitude the dimmer the object. The apparent magnitude of our sun is -26.7 The apparent magnitude of a full moon is -12.6 The apparent magnitude of the Sirius is ~ -1 Dimmest star you see (in Wilmington) ~+3.5 Dimmest star you see in a dark sky location ~+5.5 The absolute magnitude is the magnitude of the star / object if it was place a fixed distance away (10 parsecs -- later). The absolute magnitude of our sun is ~ +4.8 64

65

Distances Astronomical unit. Average distance between the earth and our sun. (AU = 1.496x10 11 meters or 97 million miles or about 8.3 light minutes) This is a small unit of measure. Used for interplanetary measures and for distances between stars in binary star systems (Kepler s Laws) Light years. The distance light travels in a year LY = 9.46x10 15 meters, 6.33x10 4 AU Parsec [pc]. The distance to an object that has a parallax of 1 arc second (next slide) preferred unit by astronomers pc = 3.26 LY = 2.06x10 5 AU = 3.086x10 16 meters Kiloparsecs (Kpc) 1000 parsecs (10 3 parsecs) Megaparsecs (Mpc) 1 million parsecs (10 6 parsecs) 66

67

Geometric parallax Gold standard for distances 1 Parsec = 3.09 10 16 meters parsec - (pc): distance at which an object would have a parallax of one arc second. Equals approximately 3.26 light years or about 206,265 astronomical units Star appears to move with season Don t move 68

69

Spectroscopic Parallax 1. Measure the spectrum of a star. Lines in the spectra will indicate if it is a main sequence star. The star needs to be bright enough to provide a measurable spectrum, which is about 10 000 parsecs. 2. Using the star spectra or using the UVB index, make certain that it is on the main sequence, deduce its spectral type (O, B, A, F, G, K, M, L) 3. From the spectral type deduce its absolute magnitude [M] (H-R diagram or table) 4. Measure the apparent magnitude (m). Knowing the apparent magnitude (m) and absolute magnitude (M) of the star, one can calculate the distance modulus (m-m) and the actual distance in parsecs next slide. Good for stars that are <~ 10,000 parsecs from us (or 32,600 light years) most of the stars in our galaxy. 70

Distance modulus is m-m if there is no interstellar dust (or extinction) If there is interstellar dust then distance modulus is ((m-e)-m) where E is the extinction magnitude The larger the distance modulus the further away the object is. Little m is usually >+10 Capital M is usually small many times negative, E can be as much a 1 or 2 (magnitudes of extinction due to dust in our galaxy) 71

Relationships between distance modulus, luminosity, distances in parsecs and absolute magnitude Msun = 4.8 (absolute magnitude or our sun) Astronomical unit [AU] = average earth- sun distance 1 AU = 1.496 x 10 8 km Diameter of our sun = 1.391 x10 6 km 1AU = 107.5 sun diameters What is distance modulus for our sun? 72

73

Instability gaps on an H-R diagram for the pulsating class of variable stars Period of pulses scale with absolute brightness of the star Period-luminosity relationship http://outreach.atnf.csiro.au/education/senior/astrophysics/variable_pulsating.html 74

Period-Luminosity Relationship equation for type 1 Cepheid For Type I, Type II Cepheids and RR Lyrae Cepheids named after the first star discovered in the constellation Cepheus (up north) Note this is luminosity these stars are much brighter than our sun. M = -2.81* log(p)-1.43 P is period in days http://outreach.atnf.csiro.au/education/senior/astrophysics/variable_cepheids.html 75

Light curve for Delta Cephei Saw tooth curve for Type 1 Cepheid variable 76

RR Lyrae and Cepheid stars as standard candles Find the period. This gives the luminosity or its absolute magnitude Measure the apparent magnitude. Determine the distance from the apparent and absolute magnitude (distance modulus) (and an estimate of the extinction [E]) The same applies to RR Lyrae variable stars. Once you know that a star is an RR Lyrae variable (eg. from the shape of its light curve), then you know its luminosity M = -2.81* log(p)-1.43 Type 1. P is period in days 77

78

Type Ia supernovae A type Ia supernova occurs in binary stellar system (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to another white dwarf. OR it can be a merger of two white dwarfs. Material is drawn off the other star (filling its Roche limit) onto the white dwarf until the white dwarf reaches the Chandrasekhar limit. Then electron degeneracy pressure is unable to prevent catastrophic collapse. If a white dwarf gradually accretes mass from a binary companion, its core will reach the ignition temperature for carbon fusion as it approaches the limit. If the white dwarf merges with another white dwarf, it will momentarily exceed the limit and begin to collapse, again raising its temperature past the nuclear fusion ignition point. Within a few seconds of initiation of nuclear fusion, a runaway reaction will occur and thus causing the supernovae Bottom line: Type 1a SN produce a consistent peak in absolute luminosity because of the uniform mass of white dwarfs that explode via the accretion mechanism. Absolute magnitude is M ~ -19.5 (negative)

Type Ia supernovae is where a white dwarf collapses because it has pulled too much material from a nearby companion star onto itself. Because the type 1a blows up at the same mass limit (see earlier discussion) (Chandrasekhar limit ~1.4x mass of our sun) they have about the same absolute magnitude at its peak brightness Standard candle 80

Using Type Ia supernovae as a standard candle Because a type Ia explodes at the Chandrasekhar limit, all type Ia SN are about the same brightness Type 1a have an absolute magnitude of about M~ -19.5 (that is a negative sign) Observed in distant galaxies. Observe a supernovae as it occurs, Construct its light curve From the light curve determine if it is a type 1a and estimate is maximum apparent magnitude (m) Distance modulus is then (m+19.5) for Type Ia supernovae (m is apparent magnitude) 81

82

Red shifting a star s spectrum Wavelength of light (nanometers, nm) 1 nm = 1x10-9 meters Increasing red shift 83

Hubble s law (measurement to very distant galaxies) Fundamental parameter measure of the expansion of our universe Hubble s Law: d = Vr or for small distances d = z * c (z < 0.5) H o d = distance in megaparsecs (millions of parsecs) Vr is recessional velocity (km/sec) Measure using red shift of the light spectrum of a galaxy H o is Hubble s constant, ~75 km/sec / megaparsecs z is the red shift = wavelength of the observed light -1 wavelength of the emitted light C is the speed of light (3x 10 5 km/sec) Problem: if wavelength of the observed light is 440 nm and the wavelength of the emitted light is 400 nm H o What is Z? What is recessional velocity? What is the distance using Hubble s law? In mpc? In light years? 84

Answer to problem z = 440-1 = 1.1-1 = 0.1 400 Vr = 0.1 x 3x 10 5 (km/sec) = 3x 10 4 (km/sec) What is the distance using Hubble s law? D = 3x 10 4 km/sec / (75 km/sec/mpc [kilometers/second/megaparces]) = 3/7.5 x 10 3 megaparces (mpc) = 0.4 x 10 3 mpc = 400 mpc = 3.26 light year / pc x 10 6 pc/mpc x 400 mpc = 1304 x 10 6 light years or = 1.3 x 10 9 ly 85

If the apparent magnitude of a star is +7 and it has a parallex of 0.01 arc seconds, what is its luminosity relative to our sun? What is the mass of the star in number of suns? 86

More info An star s is named using its constellation and letter of multiple letter designation. So RY Sagittarii is in the constellation Sagittarius (summer sky) and counting up using the alphabet (a, b, c, d, e z, AA, AB,. ) it is star RY in this constellation. A class of stars (like the Cepheid variables or RR Lyrae variables) are named after the first star discovered in that class of stars. So the first Cepheid variable was discovered in the constellation of Cepheus. The RR Lyrae variables are named after the RR Lyrae (in the constellation of Lyra [string instrument]). The T Tauri stars were named after T Tauri (a star in Taurus). 87

88