The Quantum Theory of Magnetism

Similar documents
Magnetism in Condensed Matter

Electron Correlation

Contents Basic Facts Atomic Magnetism

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

WORLD SCIENTIFIC (2014)

First-Principles Calculation of Exchange Interactions

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

Magnetic ordering of local moments

The Physics of Ferromagnetism

Spin-Orbit Interactions in Semiconductor Nanostructures

The Oxford Solid State Basics

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Contents. Acknowledgments

Preface Introduction to the electron liquid

Principles of Magnetic Resonance

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Luigi Paolasini

Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Magnetism at finite temperature: molecular field, phase transitions

Luigi Paolasini

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

Competing Ferroic Orders The magnetoelectric effect

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Solid state physics. Lecture 9: Magnetism. Prof. Dr. U. Pietsch

Basic Magnetism (I. Fundamentals)

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

The Mott Metal-Insulator Transition

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Interacting Spins. Chapter Weiss model of ferromagnetism

Luigi Paolasini

Linear spin wave theory

Magnetism and Magnetic Switching

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Concepts in Surface Physics

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Magnetic Resonance Spectroscopy

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

The Quantum Heisenberg Ferromagnet

The Hubbard model for the hydrogen molecule

ELECTRON PARAMAGNETIC RESONANCE Elementary Theory and Practical Applications

Daniel D. Stancil Anil Prabhakar. Spin Waves. Theory and Applications

An introduction to magnetism in three parts

Group Theory and Its Applications in Physics

Magnetic ordering, magnetic anisotropy and the mean-field theory

Thermal Hall effect of magnons

Theory of carbon-based magnetism

Anisotropic Magnetic Structures in Iron-Based Superconductors

The Gutzwiller Density Functional Theory

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Magnetism of materials

Fundamentals and New Frontiers of Bose Einstein Condensation

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Heisenberg Hamiltonian description of multiple-sublattice itinerant-electron systems: General considerations and applications to NiMnSb and MnAs

ITINERANT ORDERING IN CRYSTALS

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Quantum Physics II (8.05) Fall 2002 Outline

Introduction to Heisenberg model. Javier Junquera

2.1 Experimental and theoretical studies

Ferromagnetism in an orbitally degenerate Hubbard model

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation

Quasi-1d Antiferromagnets

Introduction to Density Functional Theory

Solid Surfaces, Interfaces and Thin Films

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic.

عناوین 1- مواد فرومغناطیس

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

LECTURES ON QUANTUM MECHANICS

Electronic and Optoelectronic Properties of Semiconductor Structures

STUDY OF THE EXCITED STATES OF THE QUANTUM ANTIFERROMAGNETS

arxiv:cond-mat/ v1 1 Dec 1999

Quantum Spin-Metals in Weak Mott Insulators

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 14 Nov 2002

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

QUANTUM WELLS, WIRES AND DOTS

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Introduction to magnetism

MatSci 224 Magnetism and Magnetic. November 5, 2003

Condensed Matter Option MAGNETISM Handout 1

edited by Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

arxiv:cond-mat/ v1 12 Dec 2006

Spin Superfluidity and Graphene in a Strong Magnetic Field

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

Department of Physics, Princeton University. Graduate Preliminary Examination Part II. Friday, May 10, :00 am - 12:00 noon

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING

Topology in Magnetism a phenomenological account. Wednesday: vortices Friday: skyrmions

Transcription:

The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong

Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms 1.2.1 L-S ( Russel-Saunders ) coupling 1.2.2 Hund's rules 1.2.3 Spin-orbit splitting 1.3 The quantum theory of paramagnetism 1.4 Crystal-field corrections 1.4.1 Effects of crystal-field symmetry 1.4.2 Stevens Operator equivalents 1.5 Quenching of L 1.6 Time reversal and spin 1.6.1 Kramers degeneracy 1.7 Effective Spin Hamiltonian 1.7.1 Effective gyromagnetic ratio 1.7.2 Single-ion anisotropy energy 1 1 5 5 8 9 10 14 15 19 23 26 27 28 30 30 2 Interacting Spins 2.1 Weiss model of ferromagnetism 2.1.1 Critical behaviour of Weiss model 2.2 Microscopic basis of magnetism 2.2.1 The direct exchange interaction 2.2.2 The superexchange mechanism 2.2.3 The RKKY interaction 35 35 37 38 39 48 53 vii

viii CONTENTS 3 Mean Field Approximation 57 3.1 Helmholtz Free Energy 57 3.2 Mean Field Susceptibility 67 3.3 Specific Heat of Ferromagnet 69 3.4 The Oguchi method 72 3.5 Modulated Phases 77 3.6 MFA for Antiferromagnetism 81 3.6.1 Longitudinal susceptibility 84 3.6.2 Transverse susceptibility 86 3.6.3 Spin-flop and other transitions 89 3.7 Helimagnetism 93 3.8 Goldstone's theorem 99 4 Spin waves 103 4.1 Introduction 103 4.2 Holstein-Primakoff transformation 108 4.3 Linear spin-wave theory 109 4.4 Semiclassical picture 111 4.5 Macroscopic magnon theory 114 4.6 Thermal properties 116 4.6.1 Total spin deviation 116 4.6.2 Non-linear corrections 119 4.7 The Heisenberg antiferromagnet 121 4.8 Introduction 121 4.9 AFM spin-waves 122 4.10 Sublattice magnetization 127 4.11 Ground state energy of AFM 129 5 Green's functions methods 133 5.1 Definitions 133 5.2 Spectral representation 136 5.3 RPA for spin 1/2 ferromagnet 140 5.4 Comparison of RPA and MFA 144 5.5 RPA for arbitrary spin 145 5.6 RPA for ferromagnets 148 5.6.1 Paramagnetic phase 148 5.6.2 Linear FM chain 152

CONTENTS ix 5.6.3 Square FM lattice 153 5.7 FM with a finite applied field 156 5.8 RPA for antiferromagnet 157 5.8.1 Spin 1/2 AFM 157 5.8.2 Arbitrary spin AFM 159 5.8.3 Zero-point spin deviation 161 5.8.4 Correlation length 162 5.9 RPA susceptibility of AFM 166 5.10 Spin-flop transition 171 5.11 xii at low T 172 5.12 Transverse susceptibility 174 5.13 Single-site anisotropy 176 5.14 Dynamic linear response 179 5.15 Energy absorbed from external field 184 5.16 Susceptibility of FM 185 5.17 Corrections to RPA 186 6 Dipole-Dipole interactions 189 6.1 Dipolar Hamiltonian 189 6.2 Dipole-exchange spin-waves 195 6.3 Uniform precession (k = 0) mode 201 6.4 Eingenmodes for k 0 204 6.4.1 Demagnetization factors 206 6.5 Ellipticity of spin precession 207 6.6 Effect of magnons an total spin 208 6.7 Magnetostatic modes 210 7 Itinerant Magnetism 217 7.1 Introduction 217 7.2 Hubbard Hamiltonian 219 7.3 Instability of paramagnetic phase 222 7.4 Magnons in the Stoner model 224 7.4.1 The RPA susceptibility 224 7.4.2 Singularities of the susceptibility 227 7.5 21 in Stoner model 233 7.6 Metals with degenerate bands 235 7.7 Spin-density waves 239

x CONTENTS 7.8 Hartree Fock description of SDW 242 7.9 Effects of correlations 250 7.9.1 Kinetic exchange interaction 252 8 Indirect Exchange 263 8.1 Introduction 263 8.2 Effective s-d exchange interaction 265 8.3 Indirect exchange Hamiltonian 274 8.4 Range function and band structure 275 8.5 Semiconductors 285 8.5.1 Intrinsic semiconductors, high T 285 8.5.2 Intrinsic semiconductors, low T. 287 8.5.3 Degenerate semiconductors 288 8.6 Magnetic multilayer systems 289 9 Low dimensions 293 9.1 Introduction 293 9.2 Mermin-Wagner theorem 294 9.2.1 B ogoliub ov inequality 295 9.2.2 Application to the Heisenberg model 296 9.3 Dipolar interactions in low dimensions 300 9.3.1 Dipole-exchange cross-over 305 9.4 One dimensional instabilities 305 9.5 Antiferromagnetic chain 308 9.6 RPA for the AFM chain 311 9.6.1 Exchange dominated regime 311 9.6.2 Dipolar dominated regime 315 9.7 Dipolar interaction in layers 316 9.7.1 Monolayer 318 9.7.2 Bilayer 320 10 Surface magnetism 329 10.1 Introduction 329 10.2 MFA treatment of surfaces 330 10.3 Surface excitations 334 10.4 LRPA method 335 10.5 Wave functions for bulk and surface 343

CONTENTS xi 10.6 Surface density of magnon states 344 10.7 Surface phase-transitions 347 10.8 Dipolar surface effects 351 10.9 Surface magnetism in metals 354 11 Two-magnon eigenstates 361 11.1 Introduction 361 11.2 Green's function formalism 364 11.3 One dimension 371 11.4 Two dimension 374 11.5 Summary of results 375 11.6 Anisotropy effects 377 12 Other interactions 381 12.1 Introduction 381 12.2 Two-magnon interaction 385 12.3 Three-magnon processes 387 12.4 Magnon-phonon interaction 392 12.5 Bilinear magnon-phonon interaction 395 A Group theory 401 A.1 Definition of group 401 A.2 Group representations 403 A.2.1 Reducibility 403 A.3 Orthogonality relations 405 A.4 Projection operators 406 A.5 Coordinate transformations 406 A.6 Wigner-Eckart theorem 407 A.7 Space groups 409 A.8 Bloch's theorem 411 B Appendix B Time Reversal 413 B.1 Antilinear operators 413 B.2 Anti-unitary operators 415 B.3 Time reversal 416 Index 419