Math 132 Fall 2007 Final Exam 1. Calculate cos( x ) sin( x ) dx a) 1 b) c) d) e) f) g) h) i) j)

Similar documents
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

Carleton College, Winter 2017 Math 121, Practice Final Prof. Jones. Note: the exam will have a section of true-false questions, like the one below.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

MH1101 AY1617 Sem 2. Question 1. NOT TESTED THIS TIME

SCORE. Exam 2. MA 114 Exam 2 Fall 2017

Math 132, Fall 2009 Exam 2: Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 142, Final Exam. 5/2/11.

Chapter 10: Power Series

SUMMARY OF SEQUENCES AND SERIES

Ans: a n = 3 + ( 1) n Determine whether the sequence converges or diverges. If it converges, find the limit.

MTH 133 Solutions to Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12.

Math 12 Final Exam, May 11, 2011 ANSWER KEY. 2sinh(2x) = lim. 1 x. lim e. x ln. = e. (x+1)(1) x(1) (x+1) 2. (2secθ) 5 2sec2 θ dθ.

SCORE. Exam 2. MA 114 Exam 2 Fall 2016

B U Department of Mathematics Math 101 Calculus I

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice

JANE PROFESSOR WW Prob Lib1 Summer 2000

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Math 113 Exam 4 Practice

REVIEW 1, MATH n=1 is convergent. (b) Determine whether a n is convergent.

Math 106 Fall 2014 Exam 3.2 December 10, 2014

Math 113 (Calculus 2) Section 12 Exam 4

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f t dt. Write the third-degree Taylor polynomial for G

MTH 142 Exam 3 Spr 2011 Practice Problem Solutions 1

Math 116 Practice for Exam 3

Practice Test Problems for Test IV, with Solutions

Testing for Convergence

10.5 Positive Term Series: Comparison Tests Contemporary Calculus 1

In this section, we show how to use the integral test to decide whether a series

Math 106 Fall 2014 Exam 3.1 December 10, 2014

Math 181, Solutions to Review for Exam #2 Question 1: True/False. Determine whether the following statements about a series are True or False.

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

Solutions to Final Exam Review Problems

BC: Q401.CH9A Convergent and Divergent Series (LESSON 1)

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

SCORE. Exam 2. MA 114 Exam 2 Fall 2016

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

Please do NOT write in this box. Multiple Choice. Total

MATH2007* Partial Answers to Review Exercises Fall 2004

MTH 133 Solutions to Exam 2 Nov. 18th 2015

Infinite Sequence and Series

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE SEMESTER 1 EXAMINATION ADVANCED CALCULUS II. November 2003 Time allowed :

INFINITE SEQUENCES AND SERIES

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

MTH 246 TEST 3 April 4, 2014

Strategy for Testing Series

= lim. = lim. 3 dx = lim. [1 1 b 3 ]=1. 3. Determine if the following series converge or diverge. Justify your answers completely.

INFINITE SERIES PROBLEMS-SOLUTIONS. 3 n and 1. converges by the Comparison Test. and. ( 8 ) 2 n. 4 n + 2. n n = 4 lim 1

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

11.6 Absolute Convrg. (Ratio & Root Tests) & 11.7 Strategy for Testing Series

Chapter 6: Numerical Series

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Math 163 REVIEW EXAM 3: SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS

Chapter 6 Overview: Sequences and Numerical Series. For the purposes of AP, this topic is broken into four basic subtopics:

MIDTERM 2 CALCULUS 2. Monday, October 22, 5:15 PM to 6:45 PM. Name PRACTICE EXAM

Chapter 7: Numerical Series

In exercises 1 and 2, (a) write the repeating decimal as a geometric series and (b) write its sum as the ratio of two integers _

Math 116 Second Midterm November 13, 2017

Midterm Exam #2. Please staple this cover and honor pledge atop your solutions.

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing

Convergence: nth-term Test, Comparing Non-negative Series, Ratio Test

Are the following series absolutely convergent? n=1. n 3. n=1 n. ( 1) n. n=1 n=1

Part I: Covers Sequence through Series Comparison Tests

e to approximate (using 4

Solutions to Practice Midterms. Practice Midterm 1

INFINITE SEQUENCES AND SERIES

f x x c x c x c... x c...

1. C only. 3. none of them. 4. B only. 5. B and C. 6. all of them. 7. A and C. 8. A and B correct

Math 152 Exam 3, Fall 2005

CHAPTER 10 INFINITE SEQUENCES AND SERIES

Not for reproduction

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1

MAT1026 Calculus II Basic Convergence Tests for Series

Additional Notes on Power Series

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

AP Calculus Chapter 9: Infinite Series

Series Solutions (BC only)

1. Do the following sequences converge or diverge? If convergent, give the limit. Explicitly show your reasoning. 2n + 1 n ( 1) n+1.

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

Section 5.5. Infinite Series: The Ratio Test

Solutions to Homework 7

Math 122 Test 3 - Review 1

Section 1.4. Power Series

Math 116 Practice for Exam 3

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Calculus with Analytic Geometry 2

ENGI Series Page 6-01

MATH 31B: MIDTERM 2 REVIEW

Solutions to quizzes Math Spring 2007

Fooling Newton s Method

Transcription:

Math Fall 007 Fial Exam π. Calculate cos( x ) si( x ) dx. 0 a) b) f) g) 4 c) h) d) 4 i) 4 e) 5 j) 6 Solutio: d > J := It(cos(x)*si(x)^, x = 0..Pi/); J := 0 π cos( x ) si( x ) > K := studet[chagevar](u = si(x), J, u); > value(k); K := 0 4 u du dx. Let F( x ) = x 5 + t 4 dt. Calculate the derivative D( F )( ) of F at. + t a) 4 b) 5 c) 6 d) 7 e) 8 f) 4 g) 5 h) 6 i) 7 j) 8 Solutio: i

> F := (x) -> It((5+t^4)/sqrt(+t^),t = x.. ); > D(F)(x); > D(F)(); > simplify(d(f)()); F := x x 5 + x 4 5 + t 4 dt + t + x 7 9-7 x. Calculate dx. ( x + ) ( x + ) 0 a) f) l 9 8 l 9 5 b) g) l 7 6 l 8 c) h) l 5 4 l 9 4 d) i) l 4 l 6 e) j) l l 6 9 Solutio: a > J := It(x/(x+)/(x+),x = 0.. ); J := > R := studet[itegrad](j); 0 x dx ( x + ) ( x + ) x R := ( x + ) ( x + ) > PFE := covert(r, parfrac, x);

PFE := + x + > atiderivative := it(pfe, x); x + atiderivative := l ( x + ) + l ( x + ) > defiiteitegral := subs(x=,atiderivative) - subs(x=0,atiderivative); defiiteitegral := l( ) + l( ) + l( ) > Aswer := combie(defiiteitegral, l); 8 x 4. Calculate d + x + 6 ( + x ) ( + x x. ) 0 Aswer := l 8 9 a) l( ) b) l( ) c) l( ) d) l( ) e) l( ) 4 f) 4 l( ) g) 5 l( ) h) 6 l( ) i) 7 l( ) j) 8 l( ) Solutio: i > J := It((8*x^+*x+6)/(+x)/(+x^),x = 0.. ); J := > R := studet[itegrad](j); 0 8 x + x + 6 dx ( x + ) ( + x ) 8 x + x + 6 R := ( x + ) ( + x ) > PFE := covert(r, parfrac, x); x 6 PFE := + + x x + > atiderivative := it(pfe, x); atiderivative := l ( + x ) + 6 l ( x + ) > defiiteitegral := subs(x=,atiderivative) - subs(x=0,atiderivative); defiiteitegral := 7 l( ) 7 l( )

> Aswer := combie(defiiteitegral, l); e 5. Calculate x l( x ) dx. Aswer := 7 l( ) a) e b) ( e ) c) ( e ) d) ( e ) e) ( e + ) f) ( e + ) g) ( e + ) h) ( 9 e + ) i) ( 9 e + ) j) ( 9 e + ) Solutio: h > J := It(x^*l(x), x =.. exp()); J := e x l( x ) > K := studet[itparts](j, l(x)); #Itegratio by Parts with u=l(x) > value(k); K := ( e ) e + 9 ( e ) 9 dx x dx x 6. What is the derivative of x with respect to x at x =? a) l( ) b) f) l( ) c) l( ) d) l( ) g) + l( ) h) + l( ) i) 4 l( ) e) l( ) l( ) j) 4

Solutio: g > restart; > eq := f(x) = x^(/x); eq := f( x) = x > eq := map(z-> simplify(l(z), symbolic), eq); eq := l ( f( x )) = > eq := map(z -> diff(z,x), eq); x l( x) d dx f( x ) l( x ) eq := = + f( x) x x > eq4 := D(f)(x) = solve(eq, diff(f(x),x)); > eq5 := subs(x = /, eq4); eq5 := D( f) = > eq6 := subs(x = /, eq); > subs(eq6, eq5); 7. If y( 0 ) = 0 ad a) si( π cos( x )) b) si ( si( x )) c) eq4 := D( f)( x) = f( x ) ( l( x ) ) 4 f eq6 := f = 4 x x D( f ) = l( ) + l dy dx = cos( x ) y, the what is y( x )? cos π cos ( x ) d) cos ( si( x )) - e) arcsi( x ) f) arcsi ( arcsi( x )) g) si ( ta( x ) ) h) ta ( si( x ) ) i) arcsi ( ta( x )) j) arcsi ( arcta( x )) Solutio: b By the Method of Separatio of Variables:

> eq := It(/sqrt(-t^),t = 0.. y(x)) = It(cos(t),t=0..x); > eq := map(value, eq); y( x) x eq := dt = cos( t) dt t 0 eq := arcsi ( y( x )) = si( x ) > Aswer := y(x) = solve(eq, y(x)); Aswer := y( x ) = si ( si( x ) ) 0 For those who are iterested, here is how to get MAPLE to solve this differetial equatio without the user supplyig ay guidace: > ode := diff(y(x),x)=cos(x)*sqrt(-y(x)^); d ode := = dx y( x ) cos( x ) y( x ) > iitialcoditio := y(0)=0; iitialcoditio := y( 0 ) = 0 > IVP := {ode, iitialcoditio}; d IVP := { y( 0) = 0, = } dx y( x ) cos( x ) y( x ) > dsolve(ivp, y(x)); #Usig Maple's differetial equatio solver y( x ) = si ( si( x )) 8. Cosider the followig three statemets about a series a with positive terms: = I: The series coverges because lim a = 0. a + II: The series coverges because lim =. ad b coverges. b = a + III: The series coverges because lim =. a

For each statemet, determie whether the reasoig is correct or icorrect. a) I: correct, II: correct, III: correct b) I: correct, II: correct, III: icorrect c) I: correct, II: icorrect, III: correct d) I: correct, II: icorrect, III: icorrect e) I: icorrect, II: correct, III: correct f) I: icorrect, II: correct, III: icorrect g) I: icorrect, II: icorrect, III: correct h) I: icorrect, II: icorrect, III: icorrect i) Wrog aswer j) Bous wrog aswer Solutio: f I) Icorrect: Whe a = the terms of the series satisfy lim a = 0 but the series diverges. II) Correct: The assertio follows from the Limit Compariso Test. III) Icorrect: The limit coditio is the icoclusive case of the Ratio Test. (Whe a = we have lim a + a = but the series diverges.) 9. Cosider the followig three statemets about a series a with positive terms: = I: The series coverges because a < 0 +. II: The series diverges because < a. a + III: The series coverges because lim = 0. a

For each statemet, determie whether the reasoig is correct ( C ) or icorrect ( F ). a) I: C, II: C, III: C b) I: C, II: C, III: F c) I: C, II: F, III: C d) I: C, II: F, III: F e) I: F, II: C, III: C f) I: F, II: C, III: F g) I: F, II: F, III: C h) I: F, II: F, III: F i) Wrog aswer j) Bous wrog aswer Solutio: g I) Icorrect ( F ): The series = diverget. =.) No iformatio about = II) Icorrect ( F ): The series = deduced from 0 + b < a whe b is coverget. = is diverget (by compariso with the diverget p-series a ca be deduced from < a b whe = b is is coverget. No iformatio about a ca be = III) Correct (C): Sice the limit, amely 0, is less tha, this assertio follows from the Ratio Test. 0. Cosider the three series 5 I: = 0, II: = 0 ad the statemets 0!, ad III: = l( ) ( C ) The series coverges ( D ) The series diverges

For each series, decide which of statemets (C), (D) a) I: C, II: C, III: C b) I: C, II: C, III: D c) I: C, II: D, III: C d) I: C, II: D, III: D e) I: D, II: C, III: C f) I: D, II: C, III: D g) I: D, II: D, III: C h) I: D, II: D, III: D i) Wrog aswer j) Bous wrog aswer is correct. Solutio: b I) > a := -> ^5/^; > a(+), a(); > 'a(+)/a()' = a(+)/a(); a ( + ) 5 a := ( + ) 5, ( + ) 5 ( + ) 5 = a( ) ( + ) 5 > 'a(+)/a()' = simplify(a(+)/a()); a ( + ) ( + ) 5 = a( ) 5 > Limit('a(+)/a()', =ifiity) = limit(/*(+)^5/^5, =ifiity); lim a ( + ) a( ) = Sice this limit is less tha, the Ratio Test gives covergece (C). II)

> b := -> 0^/sqrt(!); > b(+), b(); b := 0 ( + ), ( + )! > 'b(+)/b()' = b(+)/b(); 0! 0! b ( + ) 0 ( + )! = b( ) ( + )! 0 > 'b(+)/b()' = 0*sqrt(!/(+)!); b ( + ) = 0 b( ) ( + )! > 'b(+)/b()' = simplify(0*sqrt(!/(+)!)) assumig (,posit); b ( + ) b( ) = 0! + > Limit('b(+)/b()', =ifiity) = limit(0/(+)^(/), =ifiity); lim b ( + ) b( ) = 0 Sice this limit is less tha, the Ratio Test gives covergece (C). III) > f := x -> /x/l(x); f := x x l( x ) > It(/x/l(x),x=.. N) = it(/x/l(x),x=.. N); N x l( x ) dx = l ( l( N ) ) l ( l( )) > It(/(x*l(x)),x =.. ifiity) = Limit( l(l(n))-l(l()), N = ifiity);

x l( x ) dx = lim N l ( l( N ) ) l ( l( )) > It(/(x*l(x)),x =.. ifiity) = limit( l(l(n))-l(l()), N = ifiity); x l( x) The give series diverges (D) by the Itegral Test. dx =. Cosider the two series I: ( ) = ad the statemets + ( ) ad II: = 0 + 4 ( AC ) The series coverges absolutely ( CC ) The series coverges coditioally ( D ) The series diverges For each series, decide which of statemets (AC), (CC), (D) is correct. a) I: AC, II: AC b) I: AC, II: CC c) I: AC, II: D d) I: CC, II: AC e) I: CC, II: CC f) I: CC, II: D g) I: D, II: AC h) I: D, II: CC i) I: D, II: D j) Wrog aswer Solutio: h

> a := -> (/(+))^; a := + We studied the limit of this sequece i cojuctio with cotiuous compoudig. > limit(a(), = ifiity); e (- ) Sice this umber is ot 0, it follows from the divergece test that the series diverges (D). II) > a := -> ^(/)/(+^(4/)); a := ( / ) + ( 4 / ) > b := -> /^(/); #Captures the size of a() b := ( / ) > limit(a()/b(), = ifiity); Sice this umber is ot 0 ad ot, we coclude from the Limit Compariso Test that the series = + 4 has the same behavior as the series =, which is diverget sice it is a p-series with p =. As a result, we coclude that the give series is ot absolutely coverget. Sice the give series coverges by the Alteratig Series Test, we coclude that it is coditioally coverget (CC).

. Cosider the two series I: = 0 π ad the statemets ad II: = 0! 0 ( 00 ) ( C ) The Ratio Test establishes covergece ( D ) The Ratio Test establishes divergece ( F ) The Ratio Test is ot coclusive. Apply the Ratio Test to series I ad II ad for each, decide which of statemets (C), (D), (F) is correct. a) I: C, II: C b) I: C, II: D c) I: C, II: F d) I: D, II: C e) I: D, II: D f) I: D, II: F g) I: F, II: C h) I: F, II: D i) I: F, II: F j) Wrog aswer Solutio: h I > a := -> /^Pi; a := π > Limit(a(+)/a(), = ifiity) = limit(a(+)/a(), = ifiity); lim π = ( + ) π Because this is equal to, the Ratio Test is ot coclusive (F).

II > a := ->!/(0^(00*)); > r := simplify(a(+)/a()); a :=! 0 ( 00 ) r := / 00000000000000000000000000000000000000000000000000000000000000000000\ 00000000000000000000000000000000 + / 0000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000000 > limit(r, = ifiity); Because this limit is greater tha, the Ratio Test establishes divergece (D).. Cosider the two series + I: = 0 0 + 00 + ad the statemets ad II: = + ( C ) The Root Test establishes covergece ( D ) The Root Test establishes divergece ( F ) The Root Test is ot coclusive. Apply the Root Test to series I ad II ad for each, decide which of statemets (C), (D), (F) is correct. a) I: C, II: C b) I: C, II: D c) I: C, II: F d) I: D, II: C e) I: D, II: D f) I: D, II: F g) I: F, II: C h) I: F, II: D

i) I: F, II: F j) Wrog aswer Solutio: g I > a := -> ((+^)/(0+00*^+^))^; a := + 0 + 00 + > r := combie(a()^(/), symbolic); + r := 0 + 00 + > Limit(a()^(/), = ifiity) = limit(r, = ifiity); lim + 0 + 00 + = Because this is equal to, the Root Test is ot coclusive (F). II > a := -> ((+)//)^; + a := > r := combie(a()^(/), symbolic); + r := > Limit(a()^(/), = ifiity) = limit(r, = ifiity); lim + =

Because this is less tha, the Root Test establishes covergece (C). 4. Let f( x) = 7 x e ( x ). What is f ( 7 ) ( 0 )? a) 0 b) 40 c) 60 d) 80 e) 00 f) 0 g) 40 h) 60 i) 80 j) 00 Solutio: g > f := x -> x^*exp(*x^)/7; f := x 7 x e ( x ) > Maclauri := series(f(x), x = 0, 0); Maclauri := + + + + 7 x 6 x5 6 x7 54 x9 O( x ) > p := covert(maclauri, polyom); p := + + + 7 6 6 54 > Aswer = 7!*coeff(p, x^7); x x 5 x 7 Aswer = 40 x 9 By direct calculatio (ot recommeded!): > (D@@7)(f)(x); 40 e ( x ) + 080 x e ( x ) + 8960 x 4 e ( x ) 96 + x 6 e ( x ) 768 + x 8 e ( x ) 048 + 9 > (D@@7)(f)(0); 40 x 0 e ( x )

0 si( x 5 ) 5. Calculate L = lim x 0 x cos( 5 x by fidig the Maclauri series of the umerator ) x ad the Maclauri series of the deomiator. These two Maclauri series begi with the same degree p moomial. (I other words, for the Maclauri series for both the umerator ad deomiator, the coefficiets of x are 0 for < p ad the coefficiets of x p are ozero.) What is the value of the product p L? a) - 6 b) - 48 c) - 60 d) - 7 e) - 84 f) - 96 g) -08 h) -0 i) - j) - 44 Solutio: f > ratio := x -> 0*si(*x^5)/(x*cos(5*x^)-x); 0 si( x 5 ) ratio := x x cos( 5 x ) x > Limit(ratio(x), x = 0) = limit(ratio(x), x = 0); lim x 0 0 si( x 5 ) -96 = x cos( 5 x ) x 5 > series(umer(ratio(x)), x = 0, 0); series(deom(ratio(x)), x = 0, 0); > Aswer = 5*(-96/5); 40 x 5 + O( x 0 ) 5 65 + + x5 4 x9 O( x ) Aswer = -96 ( ) ( x + ) 6. Calculate the iterval of covergece of. Let R be the radius of = 0 + 4 covergece. You will eed to calculate the sum of four itegers ad it might help to record them as you go. Let c be the base poit of the power series. ( c = ) Set ρ = R if R is a iteger ad - otherwise. ( ρ = ) Set σ = if the left edpoit belogs to the iterval of covergece ad 0 otherwise. ( σ =

) Set τ = if the right edpoit belogs to the iterval of covergece ad 0 otherwise. ( τ = ) What is the value of c + ρ + σ + τ? a) -4 b) - c) - d) e) f) 4 g) 7 h) 8 i) 0 j) Solutio: f > c := -; c := - > a := -> (-)^/sqrt(+)/4^; a := (-) + 4 > eq := R = Limit(abs(a()/a(+)), = ifiity); (-) + 4 ( + ) eq := R = lim + 4 ( -) ( + ) > R := limit(sqrt(+)*4^(+)/sqrt(+)/4^, = ifiity); > rho := 4; R = 4 ρ := 4 The left edpoit is a diverget p-series ( p = c R, or -7. Substitutig x = ). 7 results i the series = 0 ( ), which is + > sigma := 0; σ := 0 The right edpoit is c + R, or. Substitutig x = results i the series = 0, which is a +

coverget alteratig series because + decreases to 0. > tau := ; Fially, τ := > c+rho+sigma+tau; 4 7. Let T( x ) be the degree Taylor polyomial of l( x ) with base poit. What is T( ) l( )? 5 a) b) c) d) e) 8 4 8 8 7 5 f) g) h) i) j) 4 8 4 Solutio: c > c := : f := l: > T := x -> sum((d@@)(f)(c)/!*(x-c)^, = 0.. ); T := x = 0 ( D ( ) )( f )( c ) ( x ) > T(x); #The degree Taylor polyomial of l(x) with base poit > T()-l(); l( ) x +! ( x ) 8 c

8 arcta( x ) x 8. To approximate d x x, the Maclauri series of arcta( x ) (ad, from that, 0 the Maclauri series of the itegrad) is used. A alteratig series for the (exact) value S of the defiite itegral results. A approximatio to S is obtaied by usig the miimum umber of terms that, by the Alteratig Series Test, guaratee a absolute error less tha 0.00. What is the approximatio? a) 96 40 f) 5069 6450 b) 09 576 g) 60 c) 9 480 h) 5 440 d) 6 i) 80 e) 089 5760 j) 7 960 Solutio: j > series(arcta(t), t=0, ); #The startig poit. Subtract t the divide by t^. t + + + t 5 t5 7 t7 9 t9 O( t ) > Maclauri := series((arcta(t)-t)/t^, t=0, 5); #More terms tha eeded Maclauri := + + + + t 5 t 7 t5 9 t7 t9 t O( t ) > p := covert(maclauri, polyom); t t t 5 t 7 p := + + + 5 7 9 > eq := It((arcta(t)-t)/(t^),t = 0.. x) = it(p, t=0.. x) + `...`; t 9 t

arcta( t ) t x x 4 x 6 x 8 x 0 x eq := dt = + + + +... t 6 0 4 7 0 56 0 x We eed to idetify the first summad o the right side of this equatio that evaluates to less tha 0.00 whe x =. The term x 6 clearly does ot do the job. Next, > subs(x=/, x^4/0); 0 is also ot small eough. Next, > subs(x=/, x^6/4); 688 shows that this is the first term that is less tha the acceptable error. We therefore add the terms up to but ot icludig this oe. > Aswer := subs(x=/, -/6*x^+/0*x^4); -7 Aswer := 960 As a verificatio, MAPLE's (exact) itegratio is: > defiiteitegral := it((arcta(x)-x)/(x^),x = 0.. /); defiiteitegral := arcta + + l( 5 ) l( ) The absolute error is:

> abs(evalf(aswer-defiiteitegral)); 0.000564 9. What is the coefficiet of x 5 i the Maclauri series of 8 x 4 x? a) 6 f) 4 b) g) 6 c) 8 h) d) e) 8 4 i) j) Solutio: c Method : The geometric series way (as iteded): 8 x We write = x 4 x Thus u where u = 8 x = x ( + u + u + u +... ) 4 x x 4. 8 x = x x x 4 4 x + + + x x 5... = x + + +.... 4 6 8 The coefficiet of x 5 is 8. Method : The brute force computatioal way (ot recommeded!): > f := x -> 8*x/(4-x^); > (D@@5)(f)(x); f := x 8 x 4 x

46080 x 4 780 x 960 070 x 6 + + + ( 4 x ) 5 ( 4 x ) 4 ( 4 x ) ( 4 x ) 6 > Aswer = (D@@5)(f)(0)/5!; Aswer = 8 The Maple way: > Maclauri := series(8*x/(4-x^),x=0,8); p := covert(maclauri, polyom); Aswer := coeff(p, x^5); Maclauri := x + + + + x 8 x5 x7 O( x 9 ) x x 5 x 7 p := x + + + 8 Aswer := 8 0. What is the coefficiet of x 4 i the Maclauri series of ( + x )? a) 9 b) 9 c) 6 d) 6 e) 9 f) 9 g) h) i) j) Solutio: f Method : The Newto way (as iteded): I MAPLE, the umber "α choose ", amely α ( α )... ( α + ),!

is writte as biomial(alpha, ). > NewtoFormula := (+u)^alpha = Sum(biomial(alpha,)*u^, = 0.. ifiity); NewtoFormula := ( + u) α = biomial ( α, ) u = 0 > subs({u=x^, alpha = -/}, NewtoFormula); = 0 = ( + x ) ( / ) - biomial, ( ) x The coefficiet of x 4 ( or ( x ) for = ) is: > biomial(-/,); 9 Method : The brute force computatioal way (ot recommeded!): > f := x -> (+x^)^(-/); > (D@@4)(f)(x); f := x ( + x ) ( / ) 4480 x 4 448 x + 8 ( + x ) ( / ) 9 ( + x ) ( / ) > (D@@4)(f)(0); > (D@@4)(f)(0)/4!; 6 9 0 6 ( + x ) ( 7 / ) The Maple way:

> Maclauri := series((+x^)^(-/), x = 0, 5); p := covert(maclauri, polyom); Aswer := coeff(p, x^4); Maclauri := + + x 9 x4 O( x 6 ) x x 4 p := + 9 Aswer := 9