#A11 INTEGERS 11 (2011) NEW SEQUENCES THAT CONVERGE TO A GENERALIZATION OF EULER S CONSTANT

Similar documents
A basic logarithmic inequality, and the logarithmic mean

New Expansion and Infinite Series

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

A Note on Feng Qi Type Integral Inequalities

Journal of Inequalities in Pure and Applied Mathematics

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

IN GAUSSIAN INTEGERS X 3 + Y 3 = Z 3 HAS ONLY TRIVIAL SOLUTIONS A NEW APPROACH

The mth Ratio Convergence Test and Other Unconventional Convergence Tests

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

1 The Riemann Integral

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Asymptotic behavior of intermediate points in certain mean value theorems. III

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

On Error Sum Functions Formed by Convergents of Real Numbers

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Hermite-Hadamard type inequalities for harmonically convex functions

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

THE BERNOULLI PERIODIC FUNCTIONS. 1. Definitions

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

Math 1B, lecture 4: Error bounds for numerical methods

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Research Article Moment Inequalities and Complete Moment Convergence

Euler-Maclaurin Summation Formula 1

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Read section 3.3, 3.4 Announcements:

GENERALIZED ABSTRACTED MEAN VALUES

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

New general integral inequalities for quasiconvex functions

Lecture 14: Quadrature

An inequality related to η-convex functions (II)

Some Improvements of Hölder s Inequality on Time Scales

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Theoretical foundations of Gaussian quadrature

An approximation to the arithmetic-geometric mean. G.J.O. Jameson, Math. Gazette 98 (2014), 85 95

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Math 31S. Rumbos Fall Solutions to Assignment #16

S. S. Dragomir. 2, we have the inequality. b a

Numerical Integration

QUADRATURE is an old-fashioned word that refers to

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Latter research on Euler-Mascheroni constant. 313, Bucharest, Romania, Târgovişte, Romania,

Section 6.1 Definite Integral

AN UPPER BOUND ESTIMATE FOR H. ALZER S INTEGRAL INEQUALITY

Riemann Sums and Riemann Integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

FRACTIONAL INTEGRALS AND

Math& 152 Section Integration by Parts

2000 Mathematical Subject Classification: 65D32

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

Riemann Sums and Riemann Integrals

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Set Integral Equations in Metric Spaces

The presentation of a new type of quantum calculus

arxiv: v1 [math.ca] 7 Mar 2012

20 MATHEMATICS POLYNOMIALS

Review of Calculus, cont d

1.9 C 2 inner variations

ON THE C-INTEGRAL BENEDETTO BONGIORNO

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

ON THE EXCEPTIONAL SET IN THE PROBLEM OF DIOPHANTUS AND DAVENPORT

1 The Lagrange interpolation formula

Travelling Profile Solutions For Nonlinear Degenerate Parabolic Equation And Contour Enhancement In Image Processing

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Journal of Inequalities in Pure and Applied Mathematics

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

APPROXIMATE INTEGRATION

Integral inequalities for n times differentiable mappings

RELATIONS ON BI-PERIODIC JACOBSTHAL SEQUENCE

8 Laplace s Method and Local Limit Theorems

Dedicated to Professor D. D. Stancu on his 75th birthday Mathematical Subject Classification: 25A24, 65D30

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Binding Number and Connected (g, f + 1)-Factors in Graphs

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Research Article New Inequalities for Gamma and Digamma Functions

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

A Simple Proof of the Jensen-Type Inequality of Fink and Jodeit

On super edge-magic total labeling of banana trees

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Transcription:

#A INTEGERS (20) NEW SEQUENCES THAT CONVERGE TO A GENERALIZATION OF EULER S CONSTANT Alin Sîntămărin Deprtment of Mthemtics, Technicl University of Cluj-Npoc, Cluj-Npoc, Romni Alin.Sintmrin@mth.utcluj.ro Received: 7/3/0, Revised: 0/28/0, Accepted: 2/24/0, Published: /3/ Abstrct The purpose of the pper is to give some sequences tht converge quickly to generliztion of Euler s constnt, i.e., the it of the sequence where (0, ). n ln n, n N. Introduction Euler s constnt, being one of the most importnt constnts in mthemtics, ws investigted by mny mthemticins. Usully denoted by γ, this constnt is the it of the sequence (D n ) n N defined by D n = 2 n ln n, for ech n N. It is well-known tht n(d n γ) = n 2 (see [], [2], [3], [5, pp. 73 75], [7], [3, Problem 8, pp. 38, 97], [4], [2], [23], [24], [25], [26]). In order to increse the slow rte of convergence of the sequence (D n ) n N to γ, D. W. DeTemple considered in [4] the sequence (R n ) n N defined by R n = 2 n ln n 2, for ech n N, nd he proved tht 24(n) < R 2 n γ < 24n, 2 for ech n N. L. Tóth used in [22] the sequence (T n ) n N defined by T n = 2 n ln n 2 24n, for ech n N, nd T. Negoi proved in [2] tht 48(n) < 3 γ T n < 48n, for ech n N. 3 Let (0, ). We consider the sequence (y n ()) n N defined by y n () = n ln n, for ech n N. The sequence (y n ()) n N is convergent (see, for exmple, [6, p. 453]; see lso [5], [6], [7], [8], [9], [20] nd some of the references therein) nd

INTEGERS: (20) 2 its it, denoted by γ(), is generliztion of Euler s constnt. Clerly, γ() = γ. Numerous results regrding the generliztion of Euler s constnt γ() we hve obtined in [5], [6], [7], [8], [9] nd [20]. We mention the following representtion of γ() ([9, Theorem 2.2.4, p. 78]): m γ() = y n 2( n ) k= B (2m)! ( n ) n P 2m (x) dx, ( x ) 2m2 for ech n N, ny m N, where B is the Bernoulli number of index nd P 2m (x) = () m k= 2 sin(πx) (π) 2m, obtined by pplying the Euler-Mclurin summtion formul ([6, p. 524], [5, p. 86]). If we tke = in the bove-mentioned representtion, then we obtin result presented, for exmple, in [6, pp. 527, 528], [5, pp. 88, 89]. Recent results regrding Euler s constnt hve been obtined by C. Mortici in [9], [0], []. Also, we remind the following lemm (C. Mortici [8, Lemm]), which is consequence of the the Stolz-Cesro Theorem, the cse 0 0. Lemm. Let (x n ) n N be convergent sequence of rel numbers nd x = n x n. We suppose tht there exists α R, α >, such tht Then there exists the it n nα (x n x n ) = l R. n nα (x n x ) = l α. In Section 2 we present clsses of sequences with the rgument of the logrithmic term modified nd tht converge quickly to γ(). 2. Sequences Tht Converge to γ() Theorem 2. Let (0, ). We specify tht γ() is the it of the sequence (y n ()) n N from Introduction. (i) We consider the sequence (α n,2 ()) n N defined by α n,2 () = n 2( n ) 2( n ) 2 n ln 20( n ) 3,

INTEGERS: (20) 3 for ech n N. Then n n6 (γ() α n,2 ()) = 252. (ii) We consider the sequence (β n,2 ()) n N defined by for ech n N. Then Proof. (i) We hve β n,2 () = α n,2 () 252( n ) 6, n n8 (β n,2 () γ()) = 2 28800. α n,2 () α n,2 () = 2( n) 2( n ) 2( n) 2 2( n ) 2 ln n ln n 20( n) 3 20( n ) 3 = 2( n) 2( n) 2( n) 2 2 2( n) 2 ln 20( n) 4 ln n 3, 20( n) 4 for ech n N. Set ε n :=, for ech n N. Since ε n (, ), 20 ε4 n (, ] nd ε n 20 ε 4 n (ε n) (, ], for ech n N \ {}, using the series expnsion 3 ([6, pp. 7 79, p. 209]) we obtin α n,2 () α n,2 () ε n = 2 ε n 2 ε n 2 ε2 n 2 ln 20 ε4 n ln ε 2 n ( ε n ) 2 ε n 20 ε 4 n ( ε n ) 3 = 42 ε7 n 2 ε8 n 679 3600 ε9 n 279 800 ε0 n O(ε n ), for ech n N \ {}. It follows tht n n7 (α n,2 () α n,2 ()) = 42.

INTEGERS: (20) 4 Now, ccording to Lemm, we get (ii) We re ble to write tht β n,2 () β n,2 () = α n,2 () α n,2 () = α n,2 () α n,2 () n n6 (γ() α n,2 ()) = 252. 252( n ) 6 252( n) 6 252( n) 6 6 = α n,2 () α n,2 () 252 ε 6 n ( ε n ) 6 252 ε6 n = 2 3600 ε9 n 2 800 ε0 n O(ε n ), for ech n N \ {}. It follows tht Now, ccording to Lemm, we get n n9 (β n,2 () β n,2 ()) = 2 3600. n n8 (β n,2 () γ()) = 2 28800. 252( n) 6 In the sme mnner s in the proof of Theorem 2, considering the sequence in ech of the following prts, we get the indicted it: δ n,2 () = β n,2 () 2 28800() 8, for ech n N, n n0 (γ() δ n,2 ()) = 32 ; η n,2 () = δ n,2 () 32(), for ech n N, 0 n n2 (η n,2 () γ()) = 9950309 47744000 ; 9950309 θ n,2 () = η n,2 () 47744000(), for ech n N, 2 n n4 (γ() θ n,2 ()) = 2 ; λ n,2 () = θ n,2 () 2(), for ech n N, 4 n n6 (λ n,2 () γ()) = 62507607 400480000 ; 62507607 µ n,2 () = λ n,2 () 400480000(), for ech n N, 6 n n8 (γ() µ n,2 ()) = 43867 4364.

INTEGERS: (20) 5 We point out the pttern in forming the sequences from Theorem 2 nd those mentioned bove. For exmple, the generl term of the sequence (µ n,2 ()) n N cn be written in the form with µ n,2 () = n 2( n ) B 2 2 n 8 ln B 4 4 ( n ) 3 k=3 B, if k = 2p, p N, c k,2 = B 2 k B4 2, if k = 2p 2, p N, k 4 ( n ) 2 c k,2 ( n ), where B is the Bernoulli number of index. Relted to this remrk, see lso [6, Remrk 3.4], [9, p. 7, Remrk 2..3; pp. 00, 0, Remrk 3..6]. For Euler s constnt γ = 0.577256649... we obtin, for exmple: α 2,2 () = 0.577654550...; α 3,2 () = 0.57720768...; β 2,2 () = 0.5772274589...; β 3,2 () = 0.577262053...; δ 2,2 () = 0.57720473...; δ 3,2 () = 0.577255649...; η 2,2 () = 0.577284455...; η 3,2 () = 0.577256932...; θ 2,2 () = 0.577232959...; θ 3,2 () = 0.577256535...; λ 2,2 () = 0.577283822...; λ 3,2 () = 0.577256709...; µ 2,2 () = 0.5772686...; µ 3,2 () = 0.577256606.... As cn be seen, µ 3,2 () is ccurte to eight deciml plces in pproximting γ. Theorem 3. Let (0, ). We specify tht γ() is the it of the sequence (y n ()) n N from Introduction. (i) We consider the sequence (α n,3 ()) n 2 defined by α n,3 () = n 2( n ) 2( n ) 2 20( n ) 4 n ln for ech n N \ {}. Then 252( n ) 5 n n8 (α n,3 () γ()) = 240.,

INTEGERS: (20) 6 (ii) We consider the sequence (β n,3 ()) n 2 defined by for ech n N \ {}. Then β n,3 () = α n,3 () 240( n ) 8, n n0 (γ() β n,3 ()) = 32. (iii) We consider the sequence (δ n,3 ()) n 2 defined by for ech n N \ {}. Then Proof. (i) We hve δ n,3 () = β n,3 () 32( n ) 0, n n2 (δ n,3 () γ()) = 7497 8255520. α n,3 () α n,3 () = 2( n ) 2( n) 2( n ) 2 2( n) 2 20( n ) 4 20( n) 4 ln n ln n = 2( n) 20( n) 4 252( n) 5 2( n) 2 2( n) 2 252( n ) 5 4 20( n) 4 ln n 252( n) 6 5 ln 2( n) 2 252( n) 6, for ech n N \ {}. Set ε n :=, for ech n N \ {}. Since ε n (, ), ε n 252 ε 6 n (ε n) (, ] nd 5 252 ε6 n (, ], for ech n N \ {}, using the

INTEGERS: (20) 7 series expnsion ([6, pp. 7 79, p. 209]) we obtin α n,3 () α n,3 () = 2 ε n ε n 2 ε n 2 ε 2 n ( ε n ) 2 2 ε2 n 20 ε 4 n ( ε n ) 4 20 ε4 n ln ε n 252 ε 6 n ( ε n ) 5 ln 252 ε6 n = 30 ε9 n 3 20 ε0 n 4 33 ε n 23 24 ε2 n 259573 37592 ε3 n 357653 05840 ε4 n O(ε 5 n ), for ech n N \ {}. It follows tht Now, ccording to Lemm, we get (ii) We re ble to write tht n n9 (α n,3 () α n,3 ()) = 30. n n8 (α n,3 () γ()) = 240. β n,3 () β n,3 () = α n,3 () α n,3 () 240( n) 8 240( n ) 8 = α n,3 () α n,3 () 240( n) 8 8 240( n) 8 = α n,3 () α n,3 () 240 ε8 n 240 ε 8 n ( ε n ) 8 = 5 66 ε n for ech n N \ {}. It follows tht 5 2 ε2 n 972403 687960 ε3 n 39903 05840 ε4 n O(ε 5 n ), Now, ccording to Lemm, we get n n (β n,3 () β n,3 ()) = 5 66. n n0 (γ() β n,3 ()) = 32.

INTEGERS: (20) 8 (iii) We hve δ n,3 () δ n,3 () = β n,3 () β n,3 () = β n,3 () β n,3 () 32( n ) 0 32( n) 0 32( n) 0 0 = β n,3 () β n,3 () 32 ε 0 n ( ε n ) 0 32 ε0 n = 7497 687960 ε3 n 7497 05840 ε4 n O(ε 5 n ), for ech n N \ {}. It follows tht Now, ccording to Lemm, we get n n3 (δ n,3 () δ n,3 ()) = 7497 687960. n n2 (δ n,3 () γ()) = 7497 8255520. 32( n) 0 In the sme mnner s in the proof of Theorem 3, considering the sequence in ech of the following prts, we get the indicted it: η n,3 () = δ n,3 () 7497 8255520() 2, for ech n N \ {}, n n4 (γ() η n,3 ()) = 2 ; θ n,3 () = η n,3 () 2(), for ech n N \ {}, 4 n n6 (θ n,3 () γ()) = 367 860 ; 367 λ n,3 () = θ n,3 () 860(), for ech n N \ {}, 6 n n8 (γ() λ n,3 ()) = 2785729949 927456 ; 2785729949 µ n,3 () = λ n,3 () 927456(), for ech n N \ {}, 8 n n20 (µ n,3 () γ()) = 746 6600. We point out the pttern in forming the sequences from Theorem 3 nd those mentioned bove. For exmple, the generl term of the sequence (µ n,3 ()) n 2 cn

INTEGERS: (20) 9 be written in the form with µ n,3 () = n 2( n ) B 2 2 ( n ) 2 B 4 4 ( n ) 4 n ln B 6 6 ( n ) 5 9 k=4 B, if k = 3p, p N, B c k,3 =, if k = 3p 2, p N, B 3 k B6 6 k 3, if k = 3p 3, p N, c k,3 ( n ), where B is the Bernoulli number of index. Relted to this remrk, see lso [6, Remrk 3.4], [9, p. 7, Remrk 2..3; pp. 00, 0, Remrk 3..6]. For Euler s constnt γ = 0.577256649... we obtin, for exmple: α 2,3 () = 0.5772273253...; α 3,3 () = 0.577262000...; β 2,3 () = 0.57720492...; β 3,3 () = 0.577255649...; δ 2,3 () = 0.577284474...; δ 3,3 () = 0.577256932...; η 2,3 () = 0.577232959...; η 3,3 () = 0.577256535...; θ 2,3 () = 0.577283822...; θ 3,3 () = 0.577256709...; λ 2,3 () = 0.5772686...; λ 3,3 () = 0.577256606...; µ 2,3 () = 0.5772232685...; µ 3,3 () = 0.577256685.... As cn be seen, λ 3,3 () nd µ 3,3 () re ccurte to eight deciml plces in pproximting γ. Concluding, the following remrk cn be mde. Let (0, ) nd q N \ {}. Let n 0 = min n N n B2q 2q () > 0. We consider the 2q sequence (α n,q ()) n n0 defined by α n,q () = n n ln B 2q 2q q 2( n ) ( n ) 2q, k= B ( n )

INTEGERS: (20) 0 for ech n N, n n 0. Clerly, α n,q() = γ(). Bsed on the sequence n (α n,q ()) n n0, clss of sequences convergent to γ() cn be considered, nmely where {(α n,q,r ()) n n0 r N, r q }, α n,q,r () = α n,q () r k=q c k,q ( n ), for ech n N, n n 0, with B, if k {qp, qp 2,..., qp q }, p N, c k,q = B q k B2q q, if k = qp q, p N. k 2q In this section we hve obtined tht the sequence (α n,2 ()) n N converges to γ() with order 6 nd tht the sequence (α n,3 ()) n 2 converges to γ() with order 8. We hve lso obtined tht the sequence (α n,2,r ()) n N converges to γ() with order 2(r ), for r {3, 4, 5, 6, 7, 8}, nd tht the sequence (α n,3,r ()) n 2 converges to γ() with order 2(r ), for r {4, 5, 6, 7, 8, 9}. References [] H. Alzer, Inequlities for the gmm nd polygmm functions, Abh. Mth. Semin. Univ. Hmb. 68, 998, 363 372. [2] R. P. Bos, Estimting reminders, Mth. Mg. 5 (2), 978, 83 89. [3] C.-P. Chen, F. Qi, The best lower nd upper bounds of hrmonic sequence, RGMIA 6 (2), 2003, 303 308. [4] D. W. DeTemple, A quicker convergence to Euler s constnt, Amer. Mth. Monthly 00 (5), 993, 468 470. [5] J. Hvil, Gmm. Exploring Euler s Constnt, Princeton University Press, Princeton nd Oxford, 2003. [6] K. Knopp, Theory nd Appliction of Infinite Series, Blckie & Son Limited, London nd Glsgow, 95. [7] S. K. Lkshmn Ro, On the sequence for Euler s constnt, Amer. Mth. Monthly 63 (8), 956, 572 573. [8] C. Mortici, New pproximtions of the gmm function in terms of the digmm function, Appl. Mth. Lett. 23 (), 200, 97 00. [9] C. Mortici, Improved convergence towrds generlized Euler-Mscheroni constnt, Appl. Mth. Comput. 25 (9), 200, 3443 3448.

INTEGERS: (20) [0] C. Mortici, On new sequences converging towrds the Euler-Mscheroni constnt, Comput. Mth. Appl. 59 (8), 200, 260 264. [] C. Mortici, On some Euler-Mscheroni type sequences, Comput. Mth. Appl. 60 (7), 200, 2009 204. [2] T. Negoi, O convergenţă mi rpidă către constnt lui Euler (A quicker convergence to Euler s constnt), Gz. Mt. Seri A 5 (94) (2), 997, 3. [3] G. Póly, G. Szegö, Aufgben und Lehrsätze us der Anlysis (Theorems nd Problems in Anlysis), Verlg von Julius Springer, Berlin, 925. [4] P. J. Rippon, Convergence with pictures, Amer. Mth. Monthly 93 (6), 986, 476 478. [5] A. Sîntămărin, About generliztion of Euler s constnt, Automt. Comput. Appl. Mth. 6 (), 2007, 53 63. [6] A. Sîntămărin, A generliztion of Euler s constnt, Numer. Algorithms 46 (2), 2007, 4 5. [7] A. Sîntămărin, Some inequlities regrding generliztion of Euler s constnt, J. Inequl. Pure Appl. Mth. 9 (2), 2008, 7 pp., Article 46. [8] A. Sîntămărin, A representtion nd sequence trnsformtion regrding generliztion of Euler s constnt, Automt. Comput. Appl. Mth. 7 (2), 2008, 335 344. [9] A. Sîntămărin, A Generliztion of Euler s Constnt, Editur Medimir, Cluj-Npoc, 2008. [20] A. Sîntămărin, Approximtions for generliztion of Euler s constnt, Gz. Mt. Seri A 27 (06) (4), 2009, 30 33. [2] S. R. Tims, J. A. Tyrrell, Approximte evlution of Euler s constnt, Mth. Gz. 55 (39), 97, 65 67. [22] L. Tóth, Asupr problemei C: 608 (On problem C: 608), Gz. Mt. Seri B 94 (8), 989, 277 279. [23] L. Tóth, Problem E 3432, Amer. Mth. Monthly 98 (3), 99, 264. [24] L. Tóth, Problem E 3432 (Solution), Amer. Mth. Monthly 99 (7), 992, 684 685. [25] A. Vernescu, Ordinul de convergenţă l şirului de definiţie l constntei lui Euler (The convergence order of the definition sequence of Euler s constnt), Gz. Mt. Seri B 88 (0-), 983, 380 38. [26] R. M. Young, Euler s constnt, Mth. Gz. 75 (472), 99, 87 90.