Black holes in massive gravity

Similar documents
Introduction to the Vainshtein mechanism

Aspects of massive gravity

Claudia de Rham July 30 th 2013

Gravitational Waves. GR: 2 polarizations

Non-local Modifications of Gravity and Cosmic Acceleration

New Model of massive spin-2 particle

Vainshtein mechanism. Lecture 3

The nonlinear dynamical stability of infrared modifications of gravity

Nonlinear massive gravity and Cosmology

On the Vainshtein Mechanism

A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory

Bimetric Massive Gravity

Cosmological perturbations in nonlinear massive gravity

Higuchi VS Vainshtein

Massive gravity and cosmology

Massive gravity meets simulations?

Cosmological and astrophysical applications of vector-tensor theories

«Massive Gravity» (some of its open problems)

Massive gravity and cosmology

Massive gravity and cosmology

What happens at the horizon of an extreme black hole?

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

arxiv: v2 [hep-th] 7 Jan 2016

MASAHIDE YAMAGUCHI. Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity. (Tokyo Institute of Technology)

Non-local infrared modifications of gravity and dark energy

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris)

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

Moriond 2015 Gravitation Highlights (first part)

Healthy theories beyond Horndeski

QUINTESSENTIAL INFLATION

Bimetric Theory (The notion of spacetime in Bimetric Gravity)

Charged Boson Stars and Black Holes in Horndeski Gravity

Galileon Cosmology ASTR448 final project. Yin Li December 2012

arxiv: v1 [hep-th] 1 Oct 2008

Learning with Pierre: from branes to gravity

D. f(r) gravity. φ = 1 + f R (R). (48)

Perturbations of Cosmological and Black hole solutions

From An Apple To Black Holes Gravity in General Relativity

General Relativity. IV Escuela Mexicana de Cuerdas y Supersimetría. Gustavo Niz June 2015

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Massive gravitons in arbitrary spacetimes

Minimalism in Modified Gravity

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

CMB Polarization in Einstein-Aether Theory

Yun Soo Myung Inje University

Modelling the evolution of small black holes

Testing Gravity Cosmologically

Recent developments in bimetric theory

Fate of homogeneous and isotropic solutions in massive gravity

Testing GR on Cosmological Scales

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes

Extended mimetic gravity:

Dark energy and nonlocal gravity

Gravity and scalar fields. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste (...soon at the University of Nottingham)

Proof of the Weak Gravity Conjecture from Black Hole Entropy

Minimal theory of massive gravity

Inflationary Paradigm in Modified Gravity

Quantum Gravity and the Renormalization Group

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay

Chapter 21. The Kerr solution The Kerr metric in Boyer-Lindquist coordinates

in ghost-free bigravity and massive gravity

arxiv: v1 [hep-th] 4 May 2015

Black Holes. Jan Gutowski. King s College London

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions

Dark Energy to Modified Gravity

Tests of cosmological gravity

Status of Hořava Gravity

Singularity formation in black hole interiors

Causality, hyperbolicity, and shock formation in Lovelock theories

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay (associate researcher IAP)

Stable bouncing universe in Hořava-Lifshitz Gravity

Trapped ghost wormholes and regular black holes. The stability problem

Exact Solutions of the Einstein Equations

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for?

Gravitational scalar-tensor theory

Lorentz violations: from quantum gravity to black holes. Thomas P. Sotiriou

with EFTCAMB: The Hořava gravity case

Black Hole dynamics at large D

Quantum corpuscular corrections to the Newtonian potential

Causality in Gauss-Bonnet Gravity

arxiv: v3 [hep-th] 30 May 2018

arxiv: v2 [gr-qc] 27 Apr 2013

Massless field perturbations around a black hole in Hořava-Lifshitz gravity

The implications of GW detections for GR extensions

Recovering General Relativity from Hořava Theory

Quantum Gravity and Black Holes

Cosmology in generalized Proca theories

Momentum relaxation in holographic massive gravity

The abundant richness of Einstein-Yang-Mills

Lecture 2: 3d gravity as group theory Quantum Coulomb Solution

Null Energy Condition violations in bimetric gravity

Late-time tails of self-gravitating waves

Late-time behavior of massive scalars in Kerr spacetime. Gaurav Khanna UMass - Dartmouth February 24th, 2005

Massive and Newton-Cartan Gravity in Action

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

Inflationary Massive Gravity

Large D Black Hole Membrane Dynamics

Transcription:

Black holes in massive gravity Eugeny Babichev LPT, Orsay IAP PARIS, MARCH 14 2016 REVIEW: in collaboration with: R. Brito, M. Crisostomi, C. Deffayet, A. Fabbri,P. Pani, ARXIV:1503.07529 1512.04058 1406.6096 1405.0581 1401.6871 1307.3640 1304.7240 1304.5992

OUTLINE Introduction Classes of solutions Solutions with a source Black holes Perturbations and (in)stability of black holes Conclusions

INTRODUCTION

Why modify gravity? Why modify gravity? - cosmological constant problems, - non-renormalizability problem, - benchmarks for testing General Relativity - theoretical curiosity. Many ways to modify gravity: - f(r), scalar-tensor theories, - Galileons, Horndeski (and beyond) theory, KGB, Fab-four, - higher-dimensions, - DGP, - Horava, Khronometric - massive gravity - Naively, cancellation of the cosmological constant, because of the Yukawa decay; - Small cosmological constant due to small graviton mass

Old problems of massive gravity 1. Physical ghost [Boulware&Deser 72] 2. Extra propagating degrees of freedom. It is difficult to pass basic Solar system gravity tests. vdvz discontinuity [van Dam&Veltman 70, Zakharov 70]

Fierz-Pauli massive gravity Expand the Einstein-Hilbert action: g µ = µ + h µ S GR = M 2 P Z d 4 x p gr = Z d 4 x 1 2 hµ E µ h + O(h 3 ) E µ h = 1 2 @ µ@ h 1 2 h µ + 1 2 @ @ µ h + 1 2 @ @ h µ 1 2 µ (@ @ h h) 2 propagating spin: 2 massless gravitons, spin-2 x! x +,h µ = µ; ;µ

Fierz-Pauli massive gravity Fierz-Pauli action (Fierz&Pauli 39): S PF = M 2 P Z d 4 x apple 1 2 hµ E µ h 1 4 m2 h µ h µ h 2 Linearized Einstein- Hilbert term mass term x! x +,h µ = µ; ;µ 5 healthy degrees of freedom (because of a particular choice of the potential, h=0) for a generic mass term 6 d.o.f., one is necessary Ostrogradski ghost Non-linear completion?

Non-linear massive gravity Introduce an extra metric to construct a mass term (in order to contract indices) Construct a potential, which is invariant under diffeomorphism (common for two metrics) + some technical conditions

Non-linear massive gravity potential for metric [Boulware & Deser 72 [Arkani-Hamed et al 03]

Vainshtein mechanism screens extra degree of freedom Non-linear effects restore General Relativity close to the source due to the non-linear effects [Vainshtein 72] [EB, Deffayet, Ziour 09 10] Problem 2 is solved

Non-linear massive gravity Boulware-Deser ghost Generically there are two propagating scalars: one is a ghost! [Boulware & Deser 72]

drgt massive gravity special case of non-linear massive gravity Massive gravity without Boulware-Deser ghost [de Rham, Gabadadze, Tolley 10 11, Hassan & Rosen 12] +many other works Y = p g 1 f S =M 2 P Z + applem 2 P g is physical metric; f is fixed (flat) or extra dynamical metric. d 4 x p Z g " d 4 x p k=4 R[g] m 2 X f R[f] k=0 ke k (Y ) # e 0 =1,e 1 =[X], e 2 = 1 2 [X]2 [X 2 ],e 3 = 1 6 [X]3 3[X][X 2 ] + 2[X 3 ], e 4 = 1 24 [X]4 6[X] 2 [X 2 ] + 3[X 2 ] 2 + 8[X][X 3 ] 6[X 4 ]

Equations of motion G µ = m 2 T µ + g µ p G µ = m 2 p g f T µ apple + f µ + T µ (matter) M 2 P Variation of mass term Non-derivative coupling of the two metrics

Spherical symmetry and beyond

Two types of (static) spherically symmetric solutions Bi-diagonal: When two metrics can be put in the diagonal form simultaneously. Non Bi-diagonal: When this is not the case A no-go theorem for bi-diagonal black holes [Deffayet, Jacobson 11]

Spherically symmetric solutions Bi-diagonal Solutions with source. Vainshtein mechanism: GR is restored, tiny modification of GR Black holes - Bi-diagonal solutions: the two metrics are GR-like and equal or proportional (horizons coinside). - hairy black holes (numerics), non- GR Stability of black holes - Black holes are unstable (mild tachyon-like instability) Non Bi-diagonal Solutions with source. GR is perfectly restored Black holes - Non bi-diagonal solutions: the two metrics are GR-like and not proportional (horizons may not coinside). Stability of black holes - Black holes are stable Rotating solutions - Two GR-like equal metrics Rotating solutions - Two GR-like non-equal metrics

Solutions with a source

<latexit sha1_base64="b6ups/hw1cepejbl41rqnehna4i=">aaab7nicbvbnswmxej3ur1q/qh69bivgqe6kqmecf48vxftol5jns21okl2trfcw/gkvhls8+nu8+w9m2z1o64obx3szzmylusgn9bxvvfpzxvvfkg9wtrz3dveq+wcpjsk0zqfnrklbetfmcmucy61g7vq Vainshtein mechanism in bi-gravity Weak-field approximation [EB,Deffayet,Ziour 10] Vainshtein mechanism in bi-gravity [Volkov 12] [EB,Crisostomi 13] Linearized Einstein equations for metric g Linearized Einstein equations for metric f<latexit sha1_base64="nkrhn8k Inside the Compton length r 1/m µ 7 +... =0 <latexit sha1_base64="eyw3c4sr4ufsuwvzfg1fhka160e=">aaab+hicbvbns8naej34wetx1koxxsiiqkhfrbeh4mvjbwmlbsyb7azdursju5tccf0nxjyoepwneppfug1z0nyha4/3zpizf6wcaep7387k6tr6xmzpq7y9s7u37x4cpuoku4qgjogjakvyu84kdqwznlzsrbgiog1gw9up3xxrpvkih8w4pahafclirrcxutd1oyj7qqfz5hkeuk Algebraic equation of 7th order on µ<latexit All other metric functions depend on µ<latexit <latexit sha1_base64="czlnz6ujv0 <latexit sha1_base64="czlnz6ujv0

Vainshtein mechanism in bi-gravity recovery of GR 1.15 1.10 1.05 lêl GR n'ên' GR 1.00 0.95 0.90 0.85 10-2 10-1 1 10 10 2 rêr v

Non-Vainshtein recovery of GR Z [EB unpublished] Physical metric in the EF form, ds 2 g = h(r)dv 2 +2k(r)dvdr + r 2 d 2, Ansatz for the second metric ds 2 f C 2 = dv2 +2Sdvdr+ For C such that (C 1) 2 2 (C 1) + 1 = 0. (rµ) 02 S 2 dr 2 +(rµ) 2 d 2, Recovery of GR up to a Lambda-term ~ m 2

BLACK HOLES

<latexit sha1_base64="n93ak0bldk5biiyjul7bawixb0o=">aaacghichvhbattaef0pzaxozw0f+7lusuhi7eiitkvqmoslb0khtgkwlfarkbxkdwf3zdbc/9hvylt+pnr9ctrxoamlh3nmzu6eiuopndroo2wvvvnf2nx629re2d3bb797f6olsney8eiw6i5igqtiyyacjdyvclgwsbin7i9m+u0elbzffo3teokmpblibgdoqld9o9zhovloef1badexkocx2/utxxitwrspvemrky7xjj6ytlmvnstqvbky+5czpgzknfl+y7gkty4xi2/um1yxsxpf/+e20inw2o44pwdedbw4s9ahy7ok2w9+xpaqgxy5zfopxafeogykbzfqtpxkq8n4puthagdomtbbpu+woyegiwlskhnyphp234mazvpps8h0zgzh+qu2i1/thhum34ja5gwfkppfruklkrz0tg4acwuc5dqaxpuwb6v8zexcajy2c8f9+evvmpb6x3ror8+dfn+zxhb5sd6ry+ksr6rpfpirmicc/leork7vs9fse/vcdhettrwc+ucelf39lxauvnm=</latexit> <latexit sha1_base64="gql0qwwel2qjtgi1a2cs9nkwwco=">aaacghicbvdlssnafj3uv42vqes3g0wpsetsrn0ihw5cvjc20mqwmu7aozmhmxohhp6gg3/fjqsvt935n07allt1wmdhnho5c4+fmcqkax5rpzxvtfwn8qa+tb2zu2fshzyioowy2dhmme/6sbbgi2jlkhnpjpyg0gek449aud95ilzqolqx44s4irpenkayssv5hsm9aty9gdwlhed3fcirrlzq1tljo9aadmljsbdortxnekbfrjszwgvifaqccrq9y+r0y5ygjjkyisf6lplin0ncuszirhdsqrker2haeopgkctczwaxtecjuvowill6kyqz9fdehkihxqgvkigsq7ho5ej/xi+vwbwb0shjjynwffgqmihjmnce+5qtlnlyeyq5vx+feig4wlkvqassrmwtl4ndqf/wzbulsrnztfegr+ayviefrkat3ii2saegz+avvimp7uv70z61r3m0pbuzh+aptokpklia6q==</latexit> Black holes Schwarzschild metric Non-bidiagonal BHs [Salam & Strathdee 77] [Isham & Storey 78] [Koyama, Niz, Tasinato 11]+many others Ansatz (bi-eddington-finkelstein form) [EB& Fabbri 13] ds 2 g = 1 r g ds 2 f = C 2 h 1 r dv 2 +2dvdr + r 2 d 2, r f dv 2 +2dvdr + r 2 d 2i r Two choices: r g = r f (C 1) 2 2 (C 1) + 1 = 0 bi-diagonal non-bidiagonal For these choices the extra mass energy-momentum tensor reduces to effective cosmological constant

Charged Black holes Electromagnetic field coupled to g [EB& Fabbri 13] ds 2 g = ds 2 f = C 2 " 1 r g r + r2 Q r 2 r 2 1 r f r r 2 l 2 f l 2 g dv 2 +2dvdr + r 2 d 2,! dv 2 +2dvdr + r 2 d 2 #. A µ = Q r, 0, 0, 0

Rotating Black holes Original Kerr metric ds 2 g = 1 r g r 2 dv + a sin 2 d +2 dv + a sin 2 d dr + a sin 2 d + 2 d 2 +sin 2 d 2 2 = r 2 + a 2 cos 2 f is flat, but unusual form ds 2 f =C 2 dv 2 +2dvdr +2a sin 2 drd + 2 d 2 + r 2 + a 2 sin 2 d 2 2 Obtained from ds 2 M = dt 2 + dx 2 + dy 2 + dz 2 by: t = v r, x + iy =(r ia)e i sin, z = r cos r! Cr, v! Cv, a! Ca

Hairy bi-diagonal black holes Asymptotically AdS hairy solutions exist [Volkov 12] g µ dx µ dx = Q 2 dt 2 + N 2 dr 2 + R 2 d 2, f µ dx µ dx = a 2 dt 2 + b 2 dr 2 + U 2 d 2, Numerical integration of a system of coupled ODEs 8 >< >: N 0 = F 1 (r, N, Y, U, µ, apple, 3, 4 ) Y 0 = F 2 (r, N, Y, U, µ, apple, 3, 4 ) U 0 = F 3 (r, N, Y, U, µ, apple, 3, 4 ). 1.01 1 0.99 0.98 0.97 a/a 0 N/N 0 0.96 0.95 0.94 Y/Y 0 Q/Q 0 0 1 2 3 4 5 6 7 ln(r/r h )

Hairy bi-diagonal black holes Asymptotically flat hairy solutions [Brito,Cardoso,Pani 13]!1 C 1 N =1 2r + C 2(1 + rµ) e rµ, 2r C 1 C 2 (1 + rµ) Y =1 e rµ, 2r 2r U = r + C 2(1 + rµ + r 2 µ 2 ) e rµ, µ 2 r 2 Yukawa decay α 4 0-1 singular at small µ No solutions for µ<µ c Regular for any µ No solutions for µ<µ c α 3 =-α 4 For generic potential only for large BH mass. r s 1/H -2-3 No solutions for µ<µ c 0 1 2 3 α 3

PERTURBATIONS of BLACK HOLES

<latexit sha1_base64="eo5t7dpd/bxac/enou+7qx4obls=">aaacsxicfvblswmxgmy2pmp9rxr0eixci1j2rvqqoedfywvrc91asmm2dc1mlzyesuzv8+ljmz/ciwcvt6btgrwka4hjzdd8yfgxo1i5zrovyy8sli0xvoqra+sbm/bw9q2mtmckgsmwizapjgguk4aiipfwlagkfuaa/vby7dfviza04jdqfjnoipqcbhqjzasujfrdxau1x3ukl+d35s4po5x0ydar9cvpoxcoi8fsjpg3eltsrl1yqs4e8ddxm1icgepd+8nrrvihhcvmkjrt14lvj0fcucxiwvs0jdhcq9qnbum5consjjmqurhvlb4mimeov3ciziysfeo5cn0zgsi1kppewpzla2svnhusymotcmftryfmuevw3cvsuugwyindebbuvbxiariik9n+0ztgzn/5n2kcvu+qzvvxqvbl2iiaxbahysafp6agrkadnaagd+afvif369f6tt6sz+lozsoyo+ahcvkvszoyra==</latexit> <latexit sha1_base64="njvslz6/ca+rottpadq+uourpz0=">aaac3nicfvjnj9mwehxc1yz8fthysaiqfgmqdiwac1ildstxkvp2pbpbtv2ntwo7wz4gvzevxdga4srv4syf4yytzqryhr3l0vpmgz/pjbelkg6z7ecux7p85eq1nss9fupmrdu9o3ffuqkyxex4oqp7taanldrighkvocqtal1q4ncxedxed98l62rhxrgtxuzdyshccsdgmvd+jmwpfaldp66zrvy8zuuadba6ptjteupfupom+nipdtzxf7mpkwtxenot04brdqre9xclsnwcr4oizxsos+i0mbi57qzj0hgye2exfrly/htm3v9wgv+kwqxcrfero4n03utng6w1eh4mo9annr3me9/zsucvfga5auemw6zewq0wjvfcp6xyogs+gzwybmhaczer2/l4+jb4ljqvbnggaev9m6mg7dxwlwkzkcsdjtxof8wmfeyvzru0zyxc8bohvfiuc9ommy6lfrzvngdgvoa3ur6g0ecmx6jpwvbsyefbzg/wbjc9edofjbpu7jd75ahzjupynizia3jajorhlpoqfyo+xxb/jl/ex0+ocdtl3cn/wfztf1v2590=</latexit> <latexit sha1_base64="q7h5kzlsky6jodneeo9qwincs+g=">aaadgxicjzjnj9mweiad8lwury4cuvhuvo2lsisexjaqcehgilf2pbqthheswos4kt2pvex5hvz4k1w4aoiij/4nthqgdbfijedv3vezgu8c5kpadilvnn/p8pwr146ud27cvhx7tvf47hubfubatgqqm2cht6ckhhlkvhcwg+bpqoa0ph9e5083ykzm9gvc5rbieaxljavhz62ovsbzliwtmc6qvtmih9uzcmblfgjonxvteoggqykliza65mbwbvukf5vzqym3mxycmchtn47zc5wvniuxn4a5bmw/gpal71qidbdl3s4mghz3/a1wpvloqj0y+fwp/18szvbq5atn7yow0ov20mziomfhz9xtbaogcxprjfvri22crlpf2totrqoahelwzsdbjgtxfavquhvyyshn4pzhmhds8xtsomx+buufomdno8y4pze27j5r8ttabrq6nsnhxb7mavnvuxmb0dnfkxveigix+1bukiozre8jxusdatxwcs6mdl1skxa3rxs3qr7c+pdif8vsmno8cl496k2n7tsoyh3ygazimdwhu/kcnjazed5b77330fvkv/m/+j/9l7utvtcy98gf4x/7axoy7zq=</latexit> Perturbations spherically symmetric ansatz for perturbations [EB & Fabbri 14] Perturbations of both metrics g µ = g µ (0) + h (g) µ,f µ = f µ (0) + h (f) µ G µ = m 2 T µ, G µ = m2 apple h µ (g) = e v 0 B @ h vv (g) (r) h vr (g) (r) hvr p p g T µ f (g) (r) 0 0 (g) (r) 0 0 hrr 0 0 h (g) (r) 0 0 0 r 2 0 h µ ( ) hµ (g) C 2 h µ (f) i.e. h vv ( )(r) =h vv (g)(r) h (g) (r) r 2 sin 2. 1 C A h vv (f)(r) ( > 0)

<latexit sha1_base64="eo5t7dpd/bxac/enou+7qx4obls=">aaacsxicfvblswmxgmy2pmp9rxr0eixci1j2rvqqoedfywvrc91asmm2dc1mlzyesuzv8+ljmz/ciwcvt6btgrwka4hjzdd8yfgxo1i5zrovyy8sli0xvoqra+sbm/bw9q2mtmckgsmwizapjgguk4aiipfwlagkfuaa/vby7dfviza04jdqfjnoipqcbhqjzasujfrdxau1x3ukl+d35s4po5x0ydar9cvpoxcoi8fsjpg3eltsrl1yqs4e8ddxm1icgepd+8nrrvihhcvmkjrt14lvj0fcucxiwvs0jdhcq9qnbum5consjjmqurhvlb4mimeov3ciziysfeo5cn0zgsi1kppewpzla2svnhusymotcmftryfmuevw3cvsuugwyindebbuvbxiariik9n+0ztgzn/5n2kcvu+qzvvxqvbl2iiaxbahysafp6agrkadnaagd+afvif369f6tt6sz+lozsoyo+ahcvkvszoyra==</latexit> <latexit sha1_base64="njvslz6/ca+rottpadq+uourpz0=">aaac3nicfvjnj9mwehxc1yz8fthysaiqfgmqdiwac1ildstxkvp2pbpbtv2ntwo7wz4gvzevxdga4srv4syf4yytzqryhr3l0vpmgz/pjbelkg6z7ecux7p85eq1nss9fupmrdu9o3ffuqkyxex4oqp7taanldrighkvocqtal1q4ncxedxed98l62rhxrgtxuzdyshccsdgmvd+jmwpfaldp66zrvy8zuuadba6ptjteupfupom+nipdtzxf7mpkwtxenot04brdqre9xclsnwcr4oizxsos+i0mbi57qzj0hgye2exfrly/htm3v9wgv+kwqxcrfero4n03utng6w1eh4mo9annr3me9/zsucvfga5auemw6zewq0wjvfcp6xyogs+gzwybmhaczer2/l4+jb4ljqvbnggaev9m6mg7dxwlwkzkcsdjtxof8wmfeyvzru0zyxc8bohvfiuc9ommy6lfrzvngdgvoa3ur6g0ecmx6jpwvbsyefbzg/wbjc9edofjbpu7jd75ahzjupynizia3jajorhlpoqfyo+xxb/jl/ex0+ocdtl3cn/wfztf1v2590=</latexit> <latexit sha1_base64="g+s85vmxqj32p0l++b+x665ezes=">aaadjhicjvlljtmwfhxcy4by6scsjuvf1w6qteiwekkqnbt2dbjlrqrbynfvemscj7kdspxln2hdr7bhwsawbpgw3dra6sdelrydnotzcnzjubrcmyj6fotxrt+4exb4q3x7zt1799thd97polimjqwqhtqpqqbbjuwmnwloswu0jwwcxrcnm/7zcptmhxxr1ixmcppknnbgjacwr8glbg5jxhfzuyxtjx33kiskmguefp1dsvhkoxsyhzkiidg9fsykhprls5wia2ezl+dz7i1wq8akp/q4wznqh/fuvc9cfgruvkd9q9c8dh2eoummusna0o3zt9bz5qpvkknftt3/0mkiuzypmt7whibcnocmiqez6s/anwgq1ywvgmedoqip00x7kiwlvuugdrnu6+kwks3mmxroblgwqtsulf3qfkyespqdntn6lzv8xdnlnbtkl2lwze4qlm21xuex35ltk+n93ob8w29amer4zrkskwosbt+uvakbam+udf5ybcyitqeuke6zypzrp0tjl1bld2g4f+srydiapbteb552xunmgofoexqmemiinqmxeovo0qsx4h3wmfgcxiyfwk/hl/drdmsynjqh6i8kv/8aew30ta==</latexit> Perturbations spherically symmetric ansatz for perturbations [EB & Fabbri 14] Perturbations of both metrics g µ = g µ (0) + h (g) µ,f µ = f µ (0) + h (f) µ G µ = m 2 T µ, G µ = m2 apple h µ (f) = e v C 2 0 B @ h vv (f) (r) h vr (f) (r) hvr p p g T µ f (f) (r) 0 0 (f) (r) 0 0 hrr 0 0 h (f) (r) 0 0 0 r 2 0 h µ ( ) hµ (g) C 2 h µ (f) i.e. h vv ( )(r) =h vv (g)(r) h. (f) (r) r 2 sin 2 h vv (f)(r) 1 C A ( > 0)

Spherical Perturbations Regularity at horizons and infinity!

Perturbations for bidiagonal case E µ h (+) =0 is massive is massless

Bi-diagonal case GL instability A system of equations of second order plus 2 constraints on Playing with equations we can obtain a single equation on ' 0 (a combination of H tt, H rr and H tr ) d 2 dr 2 ' 0 +! 2 V (r) ' 0 =0 0.010 0.005 5 10 15 20-0.005 V 0 = 1 r g r apple 2M r 3 + m02 + 24M(M r)m02 +6r 3 (r 4M)m 04 (2M + r 3 m 02 ) 2

Bi-diagonal case: Instability Instability Confirmed independently by [Brito, Cardoso, Pani 13]

Instability of black holes rate of instability Rate of instability 0.1 0.08 0.06 0.04 0.02 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Very slow instability! Approximately linear dependance

<latexit sha1_base64="kr8cupwieblo+mqm48hrlwhbdgm=">aaaclxicbzdlsgmxfiyz9dbw26hln8eivjqyi6juhikilqs4ttdwkkkzbwisgzkmuiz5ije+ii4el7j1nuwvily9kpdz/eeqnn+pgfxacd6sznz8wujsnpdfxlldw7c3nu9ugetmpbyyunz8paijgniaakzqkssi+4xu/d75wk8+eklokg51pyjnjjqcbhqjbvdlvsh175mgjxsitltjsxmq7kxwdmjfckeslvzephb/bi9yc9sfp+qmc04ldywkyfyvlv3saic45krozjbsddejddnbulpmsjpvxipecpdqh9snfigt1uyg66zw15a2dejpjtbwsp9ojigr1ee+6erid9wkn4czvhqsg9nmqkuuaylw6kegzlchcjadbfnjsgz9ixcw1pwv4i6scgutcn6e4e6upc28w9jxybk+kptl4zsyybvsgcjwwqkogytqar7a4be8g3fwyt1zr9an9tvqzvjjms3wr6zvhzmepmc=</latexit> Non-bidiagonal case General solution for perturbations [EB & Fabbri 14] h µ (g,f) = hµ (g,f) GR + h µ (g,f) (m) h µ GR = rµ r µ <latexit sha1_base64="stnblatoennduztg4+8sbgw9ddg=">aaacixicbzdlsgmxfiyzxmu9jbp0eyycg8tuxmtckljqzrvrc512yksznjtjdlmizeizupfv3lhq6u58gdnpqw09epj5/nm4ox+ymkq05306c/mli0vluzx86tr6xqa7tx2vyimxqekyxbieikuyfasqqwaknkicemhilexdjvzaa5gkxujo9xps5kgjaeqx0hyf7nm3lfrc+mimgvtqdgavidz0bqozalko/ufasuypeyzd3aruwst6wcfzuzqiaphujxchfjvghhohmunknupeopspkppirgz53yisinxdhdkwuibovdpnthzafuvamiqlfuldjp6esbfxqs9d28mr7qppbwt/8xpgr2fnlireaclweffkgnqxhouf21qsrfnfcoqltx+fuiskwtqmmrchlkzpnhxvo+jj0bs5lptlkzryybfsgqnqaqegdk5bbvqbbk/gbbybd+fzexu+

<latexit sha1_base64="jd4aqrmcsbnzr9xtrh2tvbqb9fy=">aaac3xicbvjnj9mwehxc1xi+tgthlhyvqd1slrteckgqxafuliiyk9vtcnxjyq3jrlazumxlwiudik78l278eo64xsoxlsnzen5v/gy8dtyirk0c/wrck1evxb+xdzo6dfvo3f3ewb0pum4vgymrra1om6pbcaltw42a00ybrtibj9nzy7v+cg5k81q+n6sg5hutjm85o8zrae93ubckaols8aaydql99a57ay57u0fb8xkxeqg5guqkg4jls5wiq84yf10u48fyj2kwjm4xbxyh0rbpusdujdx/iemuklmqlto7xmox7jbrvcjn8jjn7hdra7wwh0+6hemvtjhmedeeefocoxjo8ymccun7jnyjtnepr/em8c5ipogjh8dp7ydz1qytqbomqnazjg7m3lkazgq431zdq9kzlwdmokqv6lndpe+hhzlmifnausun3rd/nrc00npvzs6zoqbu29qa/j82a03+fg65bfodkl0uylubty3xb42xxaezyuuazyq7xjerqru7ct8icknitq+8c6bj0bnr/pzpfzlx09hdd9bdneajokit9bodoyliwsz4fhwjvoyfw8/ht/d7rwoy+dp30auif/wb+zhwsa==</latexit> <latexit sha1_base64="1ila0xcj1lfnsgcxlqdr+pikku0=">aaachhicbvfnj9mwehxcx+6wj+3ckcuicprkperksnabfxhhxijrdqwmirzxsazaswq7k1ww/wm/ihv/brfnyekykuwn92y84zd5y5nsufth8+/df/dw6phk8ojxk6enw7nnp1xtsulnpognvm6xopzvdk6z5vs6lrslnnorfp1lq1/duklyu//qm5yubs5rvjcctaoy4a8qnvig5dhmjhbjc68/aisfxmqkauukyg4+20bmzsizygw0nzb8e7tecgotoe+xbzfoasr3sdi2qul0rtwg/rjvkmqaj/twxe1wyblgbytte8ywdkazqdycrznof3axxd0yot4us+hvznwqttbae46vwsrrq5cgs80ip3aqdiq2mkxxsrco1lhqttq7fy28cswkika6u2vysbcrdbzkbutumrfoqents/5pw3s6+la0rg47twuyb1r0hhqd25xaiklknn84gilkblygfxyr0g5xa2dcfpjlu2a+nvxmou/no9msd+myvuavuybi9b7n0fd0ieaiel4xele39y/80h/rv9un+l5f8xz9e/6nv8hgvei=</latexit> <latexit sha1_base64="9fmjcmsg5z9vsvwgjeb6kiieiv4=">aaab/nicbvbns8naen34wetxvpdizbeiglbsefuiflx4rgbtoqlls9m0szebudsphnidf8wlbxwv/g5v/hu3bq7a+mdg8d4mm/p8rhanjvntlswula+sltbk6xubw9v2zu69jlnfwzpgilztn2gmugrn4cbyo1gmrl5glx9wpfzbq6y0j+udzanzitktposugjg69r5yicyulyfk7knkajy8ghpvtsto1zkaz5naqsqoqknrf7lbtnoisaccan2poql4ovhaqwcjsptqlha6id3wmvssigkvn9w/wkdgcxayk1ms8et9pzgtsoss8k1nrkcvz72x+j/xssg89hiukxsypnnfysqwexkcbg64yhrezgihip Non-Bi-diagonal case explicit solution for perturbations h µ (f) GR =0 <latexit sha1_base64="c7alixiafdx+ti6kuup+n7idlp4=">aaab/nicbvbns8naen34wetxvpdizbei9vjsefuifdzosyqxhsagzxbtlt3dhn2nugio/huvhls8+ju8+w/ctjlo64obx3szzmwle0avdpxva25+yxfpubrsxl1b39i0t7bvvjxktfwcs1i2q6qio4k4mmpg2okkiiemtmlbxchvprcpacxu9ta h µ (g) GR = e v 0 B @ 0 c 1 0 0 r c 1 c 0 g 2r 0 0 2 0 0 c 0 r 3 0 0 0 0 c 0 csc 2 ( )r 3 1 C A h rr(g) (m) = A(r g r f )e v 4 h rr(f) (m) = apple 1 h rr(g) (m). m 2 h ( ), Since at r!1 v = t + r the perturbations are not regular at infinity. NO unstable modes Non-bidiagonal solution is stable against radial perturbations

Non-Bi-diagonal case Non-radial perturbations: QNM [EB,Brito,Pani 15] Decomposition of perturbations in axial and polar modes The quasinormal modes are the same as those of a Schwarzschild BH in GR! - QNM are vibration of a relativistic self-gravitating object. - The boundary conditions are important. For a mode to be QN, the perturbation must behave as ingoing wave near the horizon, perturbations be e i(ωt+k r ) i(k r ωt) and outgoing at the infinity, zon, e e i(k +r ωt).

Non-Bi-diagonal case Non-radial perturbations: general perturbations In general we do not have to assume outgoing behavior at infinity. Then the modes are not quasinormal. GR bi-diagonal non bi-diagonal monopole pure gauge dynamical (2nd order PDE) free propagating mode Polar dipole l=1 pure gauge dynamical free propagating mode Polar and axial l>=2 dynamical dynamical (double GR) dynamical (double GR + source term)

CONCLUSIONS It is possible to construct non-bidiagonal solutions in massive gravity, which are analogues of corresponding GR solutions (Schwarzschild, charged, rotating). There are hairy massive gravity black holes The non-bidiagonal black holes in massive gravity are stable The bi-diagonal spherically symmetric BHs are unstable due to the helicity-0 mode instability. The rate of instability is extremely small. Superradiant instability for rotating BHs in massive gravity. The fate of unstable BHs? The endpoint of gravitational collapse? Rotating hairy BHs? ds hairy black holes? Do perturbations around black holes contain ghosts?