Muon RLA Design Status and Simulations

Similar documents
LHeC Recirculator with Energy Recovery Beam Optics Choices

TeV Scale Muon RLA Complex Large Emittance MC Scenario

Collider Rings and IR Design for MEIC

Pros and Cons of the Acceleration Scheme (NF-IDS)

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

Overview of Acceleration

Compressor Lattice Design for SPL Beam

EIC at JLab - design considerations and detector overview

Preliminary Detector Design for the EIC at JLab

Lattice Design and Performance for PEP-X Light Source

6 Bunch Compressor and Transfer to Main Linac

(M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith, N. Thompson, E. Wooldridge, N. Wyles)

Beam Dynamics of Energy Recovering Linacs

MEIC Electron-Ion Collider - Space-Charge Issues

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Linear Collider Collaboration Tech Notes

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

ILC Damping Ring Alternative Lattice Design **

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

COMBINER RING LATTICE

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

USPAS Accelerator Physics 2017 University of California, Davis

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 7

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

ILC Damping Ring Alternative Lattice Design (Modified FODO)

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

MAX-lab. MAX IV Lattice Design: Multibend Achromats for Ultralow Emittance. Simon C. Leemann

JSPS Asien Science Seminar Synchrotron Radiation Science

Beam Optics design for CEPC collider ring

Emittance preservation in TESLA

Lattice Design of 2-loop Compact ERL. High Energy Accelerator Research Organization, KEK Miho Shimada and Yukinori Kobayashi

Chromatic Corrections for the LCLS-II Electron Transport Lines

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Overview of HEMC Scheme

Accelerator Physics Issues of ERL Prototype

Director s Accelerator R&D Review CASA Summary/ELIC

Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy *

Muon Front-End without Cooling

Accelerator Physics Final Exam pts.

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

A COST-EFFECTIVE RAPID-CYCLING SYNCHROTRON

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

Study of Alternative Optics for the NLC Prelinac Collimation section

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Nonintercepting ODR Diagnostics for Multi-GeV Electron Beams

The TESLA Dogbone Damping Ring

Full-Acceptance Detector Integration at MEIC

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

ILC Beam Dynamics Studies Using PLACET

Notes on the HIE-ISOLDE HEBT

USPAS Accelerator Physics 2013 Duke University

STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

An ERL-Based High-Power Free- Electron Laser for EUV Lithography

ERL upgrade of an existing X-ray facility: CHESS at CESR

FACET-II Design Update

Longitudinal Top-up Injection for Small Aperture Storage Rings

FODO Cell Introduction to OptiM

Choosing the Baseline Lattice for the Engineering Design Phase

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

FACET-II Design, Parameters and Capabilities

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

HE-LHC Optics Development

IOTA Integrable Optics Test Accelerator at Fermilab. Sergei Nagaitsev May 21, 2012 IPAC 2012, New Orleans

Polarization Preservation and Control in a Figure-8 Ring

I. Introduction and background

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

Physics 610. Adv Particle Physics. April 7, 2014

Introduction to Accelerators

Synchrotron Based Proton Drivers

Magnet Alignment Sensitivities in ILC DR Configuration Study Lattices. Andy Wolski. US ILC DR Teleconference July 27, 2005

7th IPAC, May 8-13, 2016, Busan, Korea

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

Iranian Light Source Facility (ILSF) Project

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

An Electron-Nucleon Collider at FAIR

CSR Benchmark Test-Case Results

and Applications in the Middle East S E S A M E Applications in the Middle East Upgrading of SESAME to 2.5GeV The Yellow Book November 2003

Tools of Particle Physics I Accelerators

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

Introduction to particle accelerators

NSLS-II. Accelerator Physics Group November 11, Lingyun Yang NSLS-II Brookhaven National Laboratory. Multiobjective DA Optimization for

Interstage Optics Design

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Emittance preserving staging optics for PWFA and LWFA

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

Energy deposition for intense muon sources (chicane + the rest of the front end)

Bernhard Holzer, CERN-LHC

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

Beam Dynamics Activities at the Thomas Jefferson National Accelerator Facility (Jefferson Lab)

Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design

Beam Optics for Parity Experiments

Overview of JLEIC beam physics simulations. Yves R. Roblin Center for Advanced Studies of Accelerators (CASA), Jefferson Lab

Transcription:

Muon RLA Design Status and Simulations Muons Inc., Vasiliy Morozov, Yves Roblin Jefferson Lab NuFact'11, Univ. of Geneva, Aug. 1-6, 211 1

Linac and RLAs IDS 244 MeV.9 GeV RLA with 2-pass Arcs 192 m 79 m.6 GeV/pass 3.6 GeV 264 m 12.6 GeV 2 GeV/pass IDS Goals: Define beamlines/lattices for all components Matrix based end-to-end simulation (machine acceptance) (OptiM) Field map based end-to-end simulation: ELEGANT, GPT and G4Beamline Error sensitivity analysis C. Bontoui Component count and costing Two regular droplet arcs replaced by one two-pass combined function magnet arc NuFact'11, Univ. of Geneva, Aug. 1-6, 211 2

Linear Pre-accelerator.9 GeV 6 5 192 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 24 short cryos 24 medium cryos 1.5 Tesla solenoid 2 Tesla solenoid NuFact'11, Univ. of Geneva, Aug. 1-6, 211 3

Transit time effect G4BL C. Bontoiu M. Aslaninejad NuFact'11, Univ. of Geneva, Aug. 1-6, 211 4

Linear Pre-accelerator Longitudinal dynamics 72 o before crest 25 on crest 25 Size_X[cm] (2.5) 2 ε Ν = 3 mm rad (2.5) 2 σ p σ z /m µ c = 15 mm Size_Y[cm] Ax_bet Ay_bet Ax_disp Ay_disp 192-3 dp/p * 1, -3 dp/p * 1, 3 3-5 S [cm] View at the 5 lat -5 S [cm] View at the 5 latt Longitudinal phase-space (s, p/p) axis range: s = ±5 cm, p/p = ±.3 NuFact'11, Univ. of Geneva, Aug. 1-6, 211 5

Pre-Linac - Longitudinal phase-space Initial distribution 15 ε l ε x /ε y = 4.8 mm rad = σ p σ z /m µ c = 24 mm -15 dp/p * 1, -3 S [cm] View at the 3 latt ELEGANT (Fieldmap) OptiM (Matrix) G4beamline (Tracking) Δp/p * 1 Δs[cm] NuFact'11, Univ. of Geneva, Aug. 1-6, 211 6

Injection/Extraction Chicane µ + µ $Lc = 6 cm $angh = 9 deg. $BH = 1.2 kgauss µ + $Lc = 6 cm $angv = 5 deg. $BV = 4.7 kgauss 5 cm 1.7 m 2.1 GeV.9 GeV µ µ + µ 1.5 GeV 3 Double achromat Optics 1 BETA_X&Y[m] DISP_X&Y[m] FODO lattice: 9 /12 (h/v) betatron phase adv. per cell BETA_X BETA_Y DISP_X DISP_Y H -H V -H 3 cells -V H 3-1 4 cells NuFact'11, Univ. of Geneva, Aug. 1-6, 211 7

Multi-pass Linac Optics Bisected Linac half pass, 9-12 MeV initial phase adv/cell 9 deg. scaling quads with energy 15 BETA_X&Y[m] quad gradient 5 DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 39.913 1-pass, 12-18 MeV mirror symmetric quads in the linac 15 BETA_X&Y[m] quad gradient 5 DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 78.913 NuFact'11, Univ. of Geneva, Aug. 1-6, 211 8

Multi-pass bi-sected linac Optics Arc 1 Arc 2 Arc 3 Arc 4 3 β x = 7.9 m β y = 8.7 m β x = 6.3 m β y = 7.9 m α x =-.8 α y =1.3 β x = 3.2 m β y = 6. m α x =-1.2 α y =1.3 α x =-1.1 α y =1.5 β x,y β x,y β x = 13. m β y = 14.4 m α x =-1.2 α y =1.5 β x,y α xy β x,y α xy 5 BETA_X&Y[m] β x,y α xy β x,y α xy β x,y α xy β x,y α xy α xy α xy DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 389.32.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3. GeV 3.6 GeV quad grad. length NuFact'11, Univ. of Geneva, Aug. 1-6, 211 9

Mirror-symmetric Droplet Arc Optics 15 E =1.2 GeV (β out = β in and α out = -α in, matched to the linacs) BETA_X&Y[m] DISP_X&Y[m] 3 BETA_X BETA_Y DISP_X DISP_Y 13-3 2 cells out transition 2 cells out 1 cells in transition 3 footprint 3 5 4 3-3 dp/p * 1, -4 S [cm] View at the lattice end 4 2 1 x [cm] 2 4 6 8 1-1 -2-3 -4-5 z [cm] -3 dp/p * 1, -4 S [cm] View at the lattice begin 4 NuFact'11, Univ. of Geneva, Aug. 1-6, 211 1

Alternative multi-pass linac Optics 9 Arc 1 Arc 2 Arc 3 Arc 1 Arc 2 Arc 3 Arc Arc 4 4 β x = 3.2 m β y = 6. m β x = 3.2 m β y = 6. m α x =-1.1 α y =1.5 α x =-1.1 α y =1.5 β x = 3.2 m β y = 6. m α x =-1.1 α y =1.5 β x = 3.2 m β y = 6. m α x =-1.1 α y =1.5 5 β x,y β x,y BETA_X&Y[m] β x,y β x,y β x,y β β x,y β x,y x,y α xy α xy α xy α α xy α xy xy α xy α xy DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 389.32.9 GeV 1.2 GeV 1.8 GeV 2.4 GeV 3. GeV 3.6 GeV quad grad. length NuFact'11, Univ. of Geneva, Aug. 1-6, 211 11

Arcs Crossing - Vertical Bypass Dogbone RLA - footprint 5 4 3 2 1 x [cm] -1 6 11 16 21 26 31-2 -3-4 -5 z [cm] 3 E = 1.2. GeV 2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 42-2 4 vertical bends: B = 1 Tesla L = 1 cm µ + µ y = 25 cm V V -V 4 cells (9 FODO) -V NuFact'11, Univ. of Geneva, Aug. 1-6, 211 12

Droplet Arcs scaling RLA I i = 1 4 E i [GeV] p i /p 1 cell_out cell_in length [m] 5 footprint Arc1 1.2 1 2 2 1 13 Arc2 1.8 1.43 2 3 15 172 Arc3 2.4 1.87 2 4 2 214 4 3 2 1 x [cm] 2 4 6 8 1-1 -2-3 Arc4 3. 2.3 2 5 25 256-4 -5 z [cm] Fixed dipole field: B i =1.5 kgauss Quadrupole strength scaled with momentum: G i = Arc circumference increases by: (1+1+5) p i p 1 6 m = 42 m.4 kgauss/cm NuFact'11, Univ. of Geneva, Aug. 1-6, 211 13

Droplet Arcs scaling RLA II i = 1 4 E i [GeV] p i /p 1 cell_out cell_in length [m] 5 footprint Arc1 4.6 1 2 2 1 26 Arc2 6.6 1.435 2 3 15 344 Arc3 8.6 1.87 2 4 2 428 4 3 2 1 x [cm] 2 4 6 8 1-1 -2-3 Arc4 1.6 2.35 2 5 25 512-4 -5 z [cm] Fixed dipole field: B i = 4.3 kgauss Quadrupole strength scaled with momentum: G i = Arc circumference increases by: (1+1+5) p i p 1 12 m = 84 m 1.5 kgauss/cm NuFact'11, Univ. of Geneva, Aug. 1-6, 211 14

Component Count beamline RF cavities solenoids dipoles quads sext 1-cell 2-cell pre-accelerator 6 62 25 inj-chic I 8+3 16 3 RLA I linac 24 26 arc1 35 43 arc2 49 57 arc3 63 71 arc4 77 85 inj-chic II 8+3 16 3 RLA II linac 8 42 arc1 35 43 arc2 49 57 arc3 63 71 arc4 77 85 Lambertson 1 NuFact'11, Univ. of Geneva, Aug. 1-6, 211 15

Two-pass Arc Layout Simple closing of arc geometry when using similar super cells 1.2 / 2.4 GeV/c arc design used as an illustration can be scaled/optimized for higher energies preserving the factor of 2 momentum ratio of the two passes Droplet arc: 6 outward bend 3 inward bend 6 outward bend 3 6 C = 117.6 m Vasiliy Morozov NuFact'11, Univ. of Geneva, Aug. 1-6, 211 16

Large Acceptance Super-cell (2 passes) Each arc is composed of symmetric super cells consisting of linear combined-function magnets (each bend: 2.5 ) 1.2 GeV Optics 2.4 GeV Optics θ = 6 NuFact'11, Univ. of Geneva, Aug. 1-6, 211 17

Droplet Arc Spreader/Recombiner First few magnets of the super cell have dipole field component only, serving as Spreader/Recombiner * Trajectories are shown to scale B 1.7 Tesla G 28 Tesla/m NuFact'11, Univ. of Geneva, Aug. 1-6, 211 18

Summary Piece-wise end-to-end simulation with OptiM/ELEGANT (transport codes) Solenoid linac Injection chicane I (new more compact design) RLA I + Injection chicane II + RLA II Alternative multi-pass linac optics Currently under study GPT/G4beamline End-to-end simulation with fringe fields (sol. & rf cav.) Engineer individual active elements (magnets and RF cryo modules) μ decay, background, energy deposition Strong synergy with muon collider program NuFact'11, Univ. of Geneva, Aug. 1-6, 211 19

Chicane - Double Achromat Optics.5 betatron phase PHASE_X&Y Q_X Q_Y φ y = 2π φ x = 2π 3 3 Double achromat Optics 1 BETA_X&Y[m] DISP_X&Y[m] FODO quads: L[cm] = 5 F: G[kG/cm] =.322 D: G[kG/cm] = -.364 BETA_X BETA_Y DISP_X DISP_Y H -H V -H 3 cells -V H 3-1 sextupole pair to correct vert. emittance dilution 4 cells NuFact'11, Univ. of Geneva, Aug. 1-6, 211 2