Chapter 2 Exercise 2A

Similar documents
Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas:

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

MATH 10550, EXAM 3 SOLUTIONS

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

KNOWLEDGE OF NUMBER SENSE, CONCEPTS, AND OPERATIONS

Mth 95 Notes Module 1 Spring Section 4.1- Solving Systems of Linear Equations in Two Variables by Graphing, Substitution, and Elimination

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

MATH Exam 1 Solutions February 24, 2016

AP Calculus AB 2006 Scoring Guidelines Form B

Half Life Worksheet Extra Practice

Lecture 3. Electron and Hole Transport in Semiconductors

LESSON 2: SIMPLIFYING RADICALS

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

Section 13.3 Area and the Definite Integral

18.01 Calculus Jason Starr Fall 2005

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

AP Calculus BC 2005 Scoring Guidelines

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. v 1 = 4 km/hr = 1.

Math 21C Brian Osserman Practice Exam 2

Mathematics Extension 1

SAFE HANDS & IIT-ian's PACE EDT-10 (JEE) SOLUTIONS

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

Mathematics Extension 2

Name: Math 10550, Final Exam: December 15, 2007

ANSWER KEY WITH SOLUTION PAPER - 2 MATHEMATICS SECTION A 1. B 2. B 3. D 4. C 5. B 6. C 7. C 8. B 9. B 10. D 11. C 12. C 13. A 14. B 15.

Chapter 4. Fourier Series

Position Time Graphs 12.1

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

Mathematics Extension 2

Roberto s Notes on Infinite Series Chapter 1: Sequences and series Section 3. Geometric series

Math 113 Exam 3 Practice

SOLUTIONS TO PRISM PROBLEMS Junior Level 2014

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

NARAYANA IIT ACADEMY INDIA XI -REG_Adv. Dt: Time: 09:00 AM to 12:00 Noon Max.Marks: 180

ANSWERS SOLUTIONS iiii i. and 1. Thus, we have. i i i. i, A.

Student s Printed Name:

Coimisiún na Scrúduithe Stáit State Examinations Commission

XT - MATHS Grade 12. Date: 2010/06/29. Subject: Series and Sequences 1: Arithmetic Total Marks: 84 = 2 = 2 1. FALSE 10.

AP Calculus BC 2007 Scoring Guidelines Form B

n n 2 + 4i = lim 2 n lim 1 + 4x 2 dx = 1 2 tan ( 2i 2 x x dx = 1 2 tan 1 2 = 2 n, x i = a + i x = 2i

AIEEE 2004 (MATHEMATICS)

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

EXPERIMENT OF SIMPLE VIBRATION

Castiel, Supernatural, Season 6, Episode 18

Time-Domain Representations of LTI Systems

Objective Mathematics

ARITHMETIC PROGRESSION

MATH 304: MIDTERM EXAM SOLUTIONS

Physics Supplement to my class. Kinetic Theory

1988 AP Calculus BC: Section I

Math 105: Review for Final Exam, Part II - SOLUTIONS

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let.

4755 Mark Scheme June Question Answer Marks Guidance M1* Attempt to find M or 108M -1 M 108 M1 A1 [6] M1 A1

NATIONAL SENIOR CERTIFICATE GRADE 12

INTEGRATION BY PARTS (TABLE METHOD)

(A) 0 (B) (C) (D) (E) 2.703

Apply Properties of Rational Exponents. The properties of integer exponents you learned in Lesson 5.1 can also be applied to rational exponents.

Sample Examination Papers

1. Collision Theory 2. Activation Energy 3. Potential Energy Diagrams

CARIBBEAN EXAMINATIONS COUNCIL CARIBBEAN SECONDARY EDUCATION EXAMINATION ADDITIONAL MATHEMATICS. Paper 02 - General Proficiency

Dynamic Response of Linear Systems

The Z-Transform. (t-t 0 ) Figure 1: Simplified graph of an impulse function. For an impulse, it can be shown that (1)

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

AP Calculus BC 2011 Scoring Guidelines Form B

TEACHER CERTIFICATION STUDY GUIDE

Design for Manufacture. 3. Thermodynamics

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

(4 pts.) (4 pts.) (4 pts.) b) y(x,t) = 1/(ax 2 +b) This function has no time dependence, so cannot be a wave.

EXAM-3 MATH 261: Elementary Differential Equations MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley

DEPARTMENT OF ACTUARIAL STUDIES RESEARCH PAPER SERIES

School of Mechanical Engineering Purdue University. ME375 Frequency Response - 1

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

SPEC/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS PAPER 1 SPECIMEN PAPER. 45 minutes INSTRUCTIONS TO CANDIDATES

Name of the Student:

Kinetics of Complex Reactions

MATH CALCULUS II Objectives and Notes for Test 4

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body!

04 - LAWS OF MOTION Page 1 ( Answers at the end of all questions )

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

1. Hilbert s Grand Hotel. The Hilbert s Grand Hotel has infinite many rooms numbered 1, 2, 3, 4

NATIONAL SENIOR CERTIFICATE GRADE 12

CHAPTER 5 INTEGRATION

Math 21B-B - Homework Set 2

TECHNIQUES OF INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS

Math 152 Exam 3, Fall 2005

f t dt. Write the third-degree Taylor polynomial for G

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

Paper-II Chapter- Damped vibration

Calculus with Analytic Geometry 2

: ) 9) 6 PM, 6 PM

Math 113, Calculus II Winter 2007 Final Exam Solutions

Transcription:

Chapter Eercise A Q. 1. (i) u 0, v 10, t 5, a? 10 0 + 5a a m/s (ii) u 0, a, t 5, s? s ut + at s (0)(5) + ()(5) 5 m Q.. (i) u 0, v 4, a 3, t? 4 0 + 3t t 8 s (ii) u 0, a 3, t 8, s? s ut + at s (0)(8) + (3)(64) 96 m Q. 3. u 0, a 3, s 6, v? v u + as v 0 + (3)(6) v 6 m/s Q. 4. u 50, v 70, s 300, a? v u + as 4,900,500 + (a)(300) a 4 m/s u 50, v 70, a 4, t? 70 50 + 4t t 5 s Q. 5. a 0.5, s 600, t 40, u? s ut + at 600 u(40) + (0.5)(1,600) 600 40u + 400 00 40u u 5 m/s Q. 6. u 3, v 11, t 6, s? s ( u + v ) t s ( 3 + 11 ) (6) 4 m Q. 7. u 3, v 0, s 6, a? v u + as 0 9 + a(6) a 3 4 m/s u 3, v 0, a 3 4, t? 0 3 + ( 3 4 ) t t 4 s Q. 8. (i) u 70, v 50, t 8, a? 70 50 + a(8) a m/s u 70, t 8, a, s? s ut + at s 70(8) + ( ) (64) 560 80 480 s (ii) u 50, v 0, a, s? v u + as 0,500 5s s 500 m Q. 9. (i) u 4, v 0, a 8, s? v u + as 0 576 + ( 8)s s 36 m (ii) v u + as 0,304 + ( 8)s s 144 m Q. 10. (i) 7 km/hr 7,000 m 3,600 s 0 m/s (ii) 48 km/hr 48,000 m 3,600 s v u + as 1,600 400 + a(500) 9 a 9 m/s 40 3 0 + ( 9 ) t t 30 s 40 3 m/s 1

(iii) v u + as 0 1,600 + 9 ( 9 ) s s 400 m Q. 11. (i) 1 km/hr 1,000 m 3,600 s 5 18 m/s 7 km/hr 0 m/s ad 54 km/hr 15 m/s v u + as 5 400 + (a)(35) a m/s (ii) v u + as 0 5 + ( ) s s 45 m Q. 1. Let t be the time of meetig. s 1 5t + (3)t 5t + 3 t s 7t + ()t 7t + t s 1 + s 16 1t + 5 t 16 t 6 ( t 54 5 rejected ) At t 6, v 1 u + at 5 + (3)(6) 3 m/s v 7 + ()(6) 19 m/s Q. 13. (i) They will meet whe s 1 + s 400. 3t + (4)t + 7t + ()t 400 10t + 3t 400 3t + 10t 400 0 (3t + 40)(t 10) 0 t 40 OR t 10 3 t 10 s (t 40 is rejected as impossible) 3 (ii) s 1 3(10) + (4)(10) 30 m s 7(10) + ()(10) 170 m Q. 14. (i) 30 km/hr 30,000 m 3,600 s 5 3 0 + t t 4 6 s (ii) v u + as ( 50 3 ) 0 + ()s s 65 9 m (iii) v u + as Eercise B 0 ( 50 3 ) + (a)() a 65 9 m/s Q. 1. (i) u 0, a, v 30 30 0 + t t 15 s (ii) Speed (m/s) 30 A B 5 3 m/s 15 1 10 Time (s) Total distace covered Area uder graph A + B + C (15)(30)+ (1)(30) + (10)(30) 5 + 360 + 150 735 m (iii) u 30, v 0, t 10 0 30 + 10a 10a 30 a 3 m/s Magitude of deceleratio is 3 m/s Q.. (i) 0 0 + a(5) a 4 m/s C

Q. 3. (i) (ii) s ut + at s 0(5) + (4)(5) 50 m (iii) Remaiig distace 00 m. 00 m at 0 m/s takes 10 secods. The total time take 5 + 10 15 s Speed (m/s) 50 (i) Durig deceleratio Area uder graph 150 Area C 150 (t)(60) 150 30t 150 t 5 s (ii) Durig acceleratio u 0, v 60, a 3 Q. 4. 5 Durig acceleratio u 0, v 50, a 5 50 0 + 5t t 10 s Durig deceleratio u 50, v 0, a 10 0 50 10t 10t 50 t 5 s Time (s) Total distace travelled Area uder graph (10)(50) + (5)(50) + (5)(50) 50 + 1,50 + 15 1,65 m Total distace (ii) Average speed Total time 1,65 10 + 5 + 5 Speed (m/s) 60 1,65 40 40.65 m/s A B C 60 0 + 3t t 0 s Total distace covered Area uder graph (0)(60) + (75)(60) + 150 600 + 4,500 + 150 5,50 m (iii) Average speed 5,50 100 Q. 5. (i) v u + as (40) 0 + ()s s 400 m 40 0 + t t 0 s (ii) v u + as 0 (40) + ( 5)s s 160 m 0 40 + ( 5)t t 8 s 5.5 m/s (iii) Remaider 1,000 400 160 440 m Q. 6. (i) 440 m at 40 m/s takes 11 secods. Total time 0 + 11 + 8 39 s 7 0 + a(9) 75 t Time (s) a 3 m/s 3

(ii) v u + as 0 (7) + (a)(54) a 6 3 4 m/s (iii) d part: 0 7 + ( 6 3 4 ) t t 4 s 17 9 4 Distace Area uder the curve (13)(7) 175 m Average speed Total distace Total time Q. 8. Q. 9. 5 15 + (a)(4) 10 a m/s t 1 t Let t time spet acceleratig (t)(10) + (1 t)(10) 100 5t + 10 10t 100 a 10.5 m/s 4 5 0 5t t 4 (iv) First part: 15 0 + 3t t 5 s d part: 175 13 13 m/s Q. 10. t 18 t (t)(5) + (18 t)(5) 350 1.5t + 450 5t 350 40 a 100 1.5t t 8 s d 8 4 Q. 7. 5 15 15 7 + ( 6 3 4 ) t t 1 7 9 s Aswer: After 5 secods ad after ( 9 + 1 7 9 ) 10 7 9 s B A C 40 Area uder the curve 980 ()(10) + (15)() + (40 )(5) 980 4 s y z 40 0 z 40 8 5 Area 700 Q. 11. (i) 40 (0)(40) + 40y + (5)(40) 700 400 + 40y + 100 700 Time 0 + 5 + 5 30 s a 60 y y 5 z 3a

a 40 60 3 m/s Sice 60a 40 3az z 60a 3a 60 3 0 s Area 8,800 (60)(40) + 40y + (0)(40) 8,800 1,00 + 40y + 400 8,800 40y 7,00 Distaces are 1,00, 7,00, 400 metres (ii) 40 y 180 Total time 60 + 180 + 0 60 s 30 0 10 60 a b c d Shaded regio 1 km 1,000 m The deceleratio 3a 3 ( 3 ) m/s (from (i)) d 0 10 s Shaded regio 1,000 0c + (d)(0) 1,000 0c + (10)(0) 1,000 0c + 100 1,000 0c 900 c 45 Dotted regio: u 40, v 0, a, t b 0 40 b b 10 Area 10(0) + (10)(0) 300 m Total area 8,800 (60)(40) + 40a + 300 + 900 + 100 8,800 40a 6,300 a 157.5 Total time 60 + 157.5 + 10 + 45 + 10 8.5 Eercise C Q. 1. 10 Etra time 8.5 60 10 0 + t t 5 s.5 secods more tha the first time QED 5 t 5 Area uder the curve 100 (5)(10) + (t 5)(10) 100 t 1.5 s Q.. (i) 1 15 4 1 v 0 + ( 1 ) (15) m/s 0 + ( 5)t t 4 s (ii) Distace Area uder the curve Q. 3. (i) 4 0 + t t 1 s s ( u + v ) t 48 ( 4 + 0 ) t t 4 s ( 19 ) ( ) 19 3 8 m 5

(ii) First part: a ut + at 0(1) + ()(1) 144 m Total distace 144 + 48 19 m Total time 1 + 4 16 s Average speed 19 1 m/s 16 Q. 4. s 1 ut + at 0(t) + (4)t t s 0t s ut + at 48 u(4) + (a)(16) u + a 1 (1st ad d parts) Solvig these gives (i) a 3 m/s (ii) u 6 m/s (iii) First 6 secods: s ut + at s (6)(6) + (3)(36) 90 m s 1 s t 0t The distace travelled 90 48 4 m t 10 s s 00 m Q. 8. O A 6s B s C 105 m 63 m Q. 5. (i) v 1 10 + 3t; v 0 + t (ii) s 1 10t + 3 t ; s 0t + t (iii) v 1 v 10 + 3t 0 + t t 10 s (i) A to B: u u, s 105, t 6, a a s ut + at 105 6u + 18a A to C: u u, s 168, t 8, a a s ut + at Q. 6. (iv) s 1 s 10t + 3 t 0t + t t 0 OR t 0 s A 4s B 6s C 48 m 10 m A to B: u u, t 4, s 48, a a 168 8a + 3a Solvig gives a 3.5, u 7 Aswer: a 3.5 m/s (ii) O to A: u 0, v 7, a 3.5, s s v u + as 49 0 + 7s s 7 m 6 s ut + at 48 4u + 8a u + a 1 A to C: u u, t 10, s 150, a a s ut + at 150 10u + 50a u + 5a 15 Solvig gives a 1, u 10 Aswer: 1 m/s Q. 7. (i) s ut + at 18 u() + (a)(4) u + a 9 (1st part) Q. 9. 1st part: s ut + at 39 u(1) + a(1) u + a 78 1st ad d parts: 76 u() + a() u + a 76 First three parts: 111 u(3) + a(3) 6u + 9a u + 3a 74 Solvig the first two equatios gives a, u 40 Solvig the last two equatios gives a, u 40 They are cosistet.

Stoppig: v u + as 0 (40) + ( )s s 400 m It will travel a further 400 111 89 m Q. 13. Speed (m/s) Q. 10. a to b: s ut + at Q. 11. 0 u(5) + (a)(5) u + 5a 8 a to c: 40 u(8) + a(8) u + 8a 10 Solvig these gives u 7 3 m/s, a 3 m/s a to d: a ut + at 60 7 3 t + ( 3 ) t t + 7t 180 0 (use formula) t 10.4 s ( 17.4 is rejected). The time take 10.4 8.4 s 10 3 6 Area (10) + 3 + (6) 1,000 5 m/s Distaces are: (10)(5) 15; 3(5) 800; (6)(5) 75 m Q. 1. (i) : t 3 : 1 3 4 : 4 t T Let the top speed v v t v 7 The time take 90 secods T T v + v 7 Q. 14. (i) 7v + v 14 9v 14 9v 14 90 9v 1,60 v 140 m/s Distace (90)(140) 6,300 m 6.3 km 1 40 8 Time (s) 3 (0) 15 s 4 t 4 (0) 5 s (ii) (iii) v 0 + (1)(15) 15 m/s 15 15 5 s Area uder curve (0)(15) 150 m (ii) Area (1) + 40 + (8) 1,000 0 m/s 0 14 1 T 1 Area 1 Area 14T (1)(0) + 0(T 1) T 0 s s 14T 80 m 7

Q. 15. 1st part: s ut + at Q. 16. (i) 4 u() + a() u + a 1 1st ad d parts: 48 u(3) + a(3) u + 3a 3 Solvig these gives a 8, u 4 First three parts: 7 4t + (8)t t + t 18 0 t 3.77 (t 4.77 is rejected) Time take 3.77 3 0.77 s 16 Q Q. 17. (i) s 1 0 + ( ) t 4 t s 0 + (1)t t Distace apart, s s 1 + s 3 4 t Whe t 10, s 3 (100) 75 m 4 (ii) Whe s 108 3 4 t 108 t 144 t 1 s This is 1 10 secods later Q. 18. Let v top speed A B C 16 8 Distace i A (16)(16) 18 m 4 8 (ii) Distace i C (8)(16) 64 m Total distace travelled 19 m Remaider for B 300 19 108 m Time take 108 16 6.75 s Total time 16 + 6.75 + 8 30.75 s 4 ( v 4 + v 8 ) v 1,00 ( 3v 8 ) v 1,00 3v 16 1,00 v 6,400 8 v 80 m/s Time v 4 + v 8 80 4 + 80 8 30 s Q. 19. Let t time after cyclist passes P 8 t T Let T the time take : t d : a : 1 3 : 3 3 T ad t 3 T v 0 + (1) ( 3 T ) 3 T Area 300 (T) ( 3 T ) 300 T 30 s Greatest gap v 1 v 1 0 + 1(t 5) t 17 at t 17, s 1 1(17) 04 m s (1)(17 5) 7 m Gap 04 7 13 m Q. 0. Greatest gap v 1 v 8 + 4t 30 + 3(t ) 8 + 4t 30 + 3t 6 t 16 at t 16, s 1 8(16) + (4)(16) 640 at t 16 14, s 30 (14) + (3)(14) 714 Gap 714 640 74 m QED

Q. 1. Q.. A G P 1 P After t secods, Alberto has travelled s 1 1t + t After t secods, Gustav has travelled s t At both P 1 ad P, s 1 s + 1t + t t + t 4t + 44 0 t, Aswer: (i) After secods 10 (ii) After 0 secods more 50 6 Area uder the curve 696 (10) + 50 + (6) 696 1 1 0 + a 1 (10) a 1 1. m/s Similarily, a m/s Q. 3. Take speeds, acceleratios, distaces relative to the goods trai. Let p the passeger trai ad g the goods trai. The iitial relative speed, u pg u p u g 80 30 50 m/s The relative distace 1,500 m The fial relative speed is zero, sice the two trais must evetually be travellig at the same speed to avoid a crash. v u + as 0 (50) + a(1,500) a 5 6 m/s The relative deceleratio is, therefore, 5 6 m/s The actual deceleratio of the passeger trai is 5 6 m/s, sice the goods trai does ot decelerate at all. Q. 4. (i) Iitial relative speed, u 0 8 1 m/s Relative distace 10 m Fial relative speed 0 m/s v u + as 0 (1) + a(10) a 3 5 m/s t : t : 1. 5 : 3 5 8 : 3 8 5 8 T, t 3 8 T (ii) (i) u 1 a 1 s 10 66 54 t? s ut + at v 0 + (1.) ( 5 8 T ) 3 4 T Area 696 (T ) ( 3 4 T ) 696 T 1,856 T 8 9 54 1t + ( 1)t t 4t + 108 0 (t 6)(t 18) 0 t 6, 18 Aswer: After 6 secods 9

10 (ii) u 1 a 1 s s t t s ut + at s 1t t ds dt 1 t Eercise D 0 (Sice s is a miimum) t 1 At t 1, s 1(1) (1) 7 m This meas that they have travelled a distace of 7 m towards each other, ad so the distace betwee the will be 10 7 48 m. Q. 1. (i) s 35t 4.9t 0 t(35 4.9 t) 0 t 0 OR t 350 49 50 7 s (ii) v 0 35 9.8t 0 s 35 ( 5 t 350 98 50 14 5 7 7 ) 4.9 ( 5 7 ) 15 6.5 6.5 m Q.. (i) u(1) 4.9(1) 16.1 u 4.9 16.1 u 1 m/s (ii) v 0 1 9.8t 0 t 1 9.8 10 98 15 7 at t 15 7, s y 1 ( 15 (iii) s y 0 7 ) 4.9 ( 15 7 ) 45.5.5 m 1t 4.9t 0 t 0 OR t 1 4.9 10 49 30 7 s Q. 3. (i) s 1 s 0(t) + 4.9t 14.7 (t 1) + 4.9 (t 1) t 3(t 1) + (t 1) t 3t 3 + t t + 1 t (ii) 4.9() 19.6 m (iii) 14.7 0 1st Q. 4. (i) Let t time Q is i motio. 1 d t + time P is i motio. s P s Q 47(t + ) 4.9(t + ) 64.6t 4.9t 47t + 94 4.9t 19.6t 19.6 64.6t 4.9t 74.4 37.t t s (ii) 64.6() 4.9() 109.6 m Q. 5. First t secods u u, s 70, a 9.8, t t 70 ut 4.9t Equatio 1 First t secods u u, s 70 + 50 10, a 9.8, t t 10 ut 4.9 (t) 10 ut 19.6t Equatio Eq : 10 ut 19.6t Eq. 1: 140 ut + 9.8t 0 9.8t 00 98t t 100 49 t 10 7 s

70 u ( 10 7 ) 100 4.9 49 70 10u 7 10 u 56 m/s Q. 6. (i) u u, a 9.8, s 30, t 5 s ut + at 30 5u + ( 9.8)(5) 9.5 5u u 18.5 m/s (ii) 18.5 + ( 9.8)(5) 30.5 Speed 30.5 m/s Q. 7. 49t 4.9t 78.4 10t t 16 t 10t + 16 0 (t )(t 8) 0 t, 8, t 8 + t 10 QED OR + t b a + t ( 10) 1 + t 10 Q. 8. 70t 4.9t 10 700t 49t,100 7t 100t + 300 0 Product of roots a c t 300 7 7 t 300 QED Eercise E Q. 1. s d, t, u 0, a a s ut + at d a Equatio A Q.. (i) (ii) a d + k, t, u 0, a a s ut + at d + k a() d + k a Equatio B 4 Equatio A a 4d But a d + k d + k 4d 15ak k 3d QED 5k A B C 3k Distace i A (5k)(15ak) 37 ak Distace i C (3k)(15ak) ak Remaider 90ak 37 ak ak 30ak Time for B 30ak 15ak k s Total time 5k + k + 3k 10k s T t Let T the total time : t d : a 5a : 3a 5 8 : 3 8 5 8 T ad t 3 8 T v 0 + (3a) ( 5 8 T ) 15 8 at Area 90ak (T) ( 15 8 at ) 90ak T 96k T 4 6 k 11

Q. 3. h ut + ( g)t h ut gt gt ut + h 0 Product of roots a c t h g QED Q. 4. Let PQ QR P Q R (i) The jourey P R: u u, v 7u, s, a a v u + as 49u u + (a)() 48u 4a 1u a a 1u The jourey P Q: u u, v v, s, a 1u v u + as v u + ( 1u )() v u + 4u v 5u v 5u (ii) P to Q: u u, v 5u, s, t, a a 5u u + a 4u a Q to R: u 5u, v 7u, t t, a a (ii) Distace A ( v a ) v v a Distace C ( v b ) v v Remaider s v b a v b Time take i B ( s v a v b ) v v s v a v b Total time take a v + ( v s v a v T v a + v b + v s t Let T the total time : t b : a b a + b : a a + b bt a + b, t at a + b v 0 + (a)( bt a + b ) abt a + b Area s ( (T) abt a + b ) s T s ( a + b ab ) QED Q. 6. (a) t 1, u u, a a, s s 1 s ut + at s 1 u( 1) + a( 1) b) + v b QED Q. 5. (i) 7u 5u + at t u a t QED u u + a a + a t, u u, a a, s s s ut + at s u + a 1 a A B C b Distace travelled, s s s 1 u + a a QED

Q. 7. (b) Whe, s 17 17 u + a a u + 1 a 17 Whe 7, s 47 47 u + 7a a u + 6 a 47 Solvig these gives a 6, u 8 (i) 10 s u + a a 8 + (6)(10) (6) 65 m (ii) s 8 + 6 (6) (6 + 5) m (c) s + s + 1 56 6 + 5 + 6( + 1) + 5 56 0 Aswer: I the 0th ad 1st secods y z Average speed total distace total time v + yv + zv + y + z 5v 6 5v + 5yv + 5zv 3v + 6yv + 3zv 5 + 5y + 5z 3 + 6y + 3z + z y + z y Fractio of distace travelled at costat yv speed v + yv + zv y + y + z y + y + z y ( + z) + y y y + y y y 4 5 QED Q8 Q. 8. (i) 4 4 y z (ii) v 4 4z z ad v 4 Area uder curve d ( t y ) ( ((t y)) + y()(t y) + t y (t y) + yt y + (t y) d (t y) + yt y d t yt + y + yt y d )((t y)) d t y d y t y t d y t d QED + y t t y v 4 (t y) 13