X-ray fluorescence analysis - calibration of the X-ray energy detector

Similar documents
This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets.

Absorption of X-rays

Characteristic X-rays of molybdenum

Determination of the Rydberg constant, Moseley s law, and screening constant (Item No.: P )

TEP Examination of the structure of NaCl monocrystals with different orientations

Physical structure of matter. Duane-Hunt displacement law and Planck's quantum of action X-ray Physics. What you need:

TEP K and L edge absorption Moseley s law and the Rydberg constant

Alpha-Energies of different sources with Multi Channel Analyzer

Newton s 2nd Law with demonstration track and Cobra4

Alpha-energies of different sources with Multi Channel Analyzer (Item No.: P )

CASSY Lab. Manual ( )

X-ray absorption. 4. Prove that / = f(z 3.12 ) applies.

Physical Structure of Matter. K a doublet splitting of molybdenum X-rays / fine structure Physics of the Electron.

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION

Atomic and nuclear physics

LEP Hall effect in p-germanium with Cobra3

Physical Structure of Matter Hall effect in p-germanium with Cobra3. Solid-state Physics, Plasma Physics.

Atomic and nuclear physics

Uniformly accelerated motion with an accelerating mass with the demonstration track and timer 4 4

Magnetic field of single coils/ Biot-Savart s law with Cobra4

Rutherford experiment with MCA

Physical structure of matter Band gap of germanium with Cobra3. Solid-state Physics, Plasma Physics. What you need:

Atomic and nuclear physics

X-ray Absorption Spectroscopy

1 of :32

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

Moment and angular momentum

Related topics Velocity, acceleration, force, gravitational acceleration, kinetic energy, and potential energy

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures:

Energy loss of alpha particles - Prelab questions

Centripetal and centrifugal force

X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering.

Free fall with an interface system

Capacitor in the AC circuit with Cobra3

Coulomb s law with Cobra3

GAMMA RAY SPECTROSCOPY


X-RAY SPECTRA. Theory:

Relativistic Electrons

β-spectroscopy Fig. 1: Experimental set-up for determining inductance from the resonant frequency of an oscillatory circuit.

Electricity. Temperature dependence of different resistors and diodes /15. Stationary currents. What you need:

print first name print last name print student id grade

Coherence and width of spectral lines with Michelson interferometer

Conservation of momentum in a central elastic collision with the demonstration track and timer 4 4

LEP Newton s 2 nd Law / Air track with Cobra3. Related topics Linear motion, velocity, acceleration, conservation of energy.

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy

Forced oscillation - Pohl s pendulum with measure Dynamics. Equipment TEP

Gamma and X-Ray Detection

Analysis of γ spectrum

Thermochemistry/Calorimetry LEC Heat capacity of gases. What you need: What you can learn about. Principle and tasks

Electricity. Measuring the force on current-carrying conductors in a homogeneous magnetic field. LEYBOLD Physics Leaflets P

Advances in Field-Portable XRF

SFT3000S Measurement of Sn-Cu Coating

Physical Structure of Matter

Relaxation times in nuclear magnetic resonance

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

ORTEC AN34 Experiment 10 Compton Scattering

A Determination of Planck s Constant with LED s written by Mark Langella

Caution! Pay close attention to the special operation and safety instructions in the manual of the ultrasonic echoscope.

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

Lab Manual: Determination of Planck s constant with x-rays

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

/15 Current balance / Force acting on a current-carrying conductor

Experiment 6 1. The Compton Effect Physics 2150 Experiment No. 6 University of Colorado

Nanoscale work function measurements by Scanning Tunneling Spectroscopy

Determination of freezing points of pure substances with Cobra4 TEC

Elementary charge and Millikan experiment Students worksheet

Ruby crystals and the first laser A spectroscopy experiment

"Neutron Flux Distribution"

QuantumMCA QuantumNaI QuantumGe QuantumGold

Equation of state of ideal gases Students worksheet

Diffractometer. Geometry Optics Detectors

Photoemission Spectroscopy

Scintillation Detector

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Nanoscale characteristics by Scanning Tunneling Spectroscopy

OXEA - Online Elemental Analyzer

Physics. Nuclear Physics University Experiments. Training and Experimental System for Students

4- Locate the channel number of the peak centroid with the software cursor and note the corresponding energy. Record these values.

Shear waves in solid-state materials

Atomic and Nuclear Physics

Chem 481 Lecture Material 3/20/09

NUCL 3000/5030 Laboratory 2 Fall 2013

Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves

Bragg reflection :determining the lattice constants of monocrystals

Mechanics. Coupled Pendula with Cobra Dynamics. What you need:

Overview of X-Ray Fluorescence Analysis

Moment of inertia and angular acceleration with Cobra 3

Information on the test material EDS-TM002 and the BAM software package EDX Spectrometer Test for determination of the spectrometer performance

Software BioScout-Calibrator June 2013

Mechanics Moment and angular momentum. Dynamics. What you need:

Pulse Height Analysis System (PHA) designed for W7-X Presented by Monika KUBKOWSKA

dn(t) dt where λ is the constant decay probability per unit time. The solution is N(t) = N 0 exp( λt)

Stirling engine with Cobra3

Ion-Chamber Survey Meter OD-02

CHEM*3440. X-Ray Energies. Bremsstrahlung Radiation. X-ray Line Spectra. Chemical Instrumentation. X-Ray Spectroscopy. Topic 13

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry.

He-3 Neutron Detectors

Transcription:

X-ray fluorescence analysis - TEP Related topics Bremsstrahlung, characteristic X-radiation, energy levels, fluorescence radiation, conduction processes in semiconductors, doping of semiconductors, pin-diodes, semiconductor energy detectors, and multichannel analysers. Principle Various metal samples are subjected to polychromatic X-rays. The resulting fluorescence radiation is analysed with the aid of a semiconductor detector and a multi-channel analyser. The maxima of intensity of the corresponding characteristic X-ray lines are determined. The predefined energy values of the characteristic lines and channels of the multi-channel analyser that must be assigned in turn result in a calibration of the semiconductor energy detector. Equipment 1 XR 4.0 expert unit 35kV 09057-99 1 X-ray Goniometer for X-ray unit, 35 kv 09057-10 1 X-ray Plug-in module with W X-ray tube 09057-80 1 Multi-channel analyser 13727-99 1 X-ray energy detector 09058-30 1 XR 4.0 XRED cable 50 cm 09058-32 1 Screened cable, BNC, l = 750 mm 07542-11 1 Metal samples for X-ray fluorescence, set of 7 09058-31 1 X-ray Universal crystal holder for the X-ray unit 09058-02 1 Software for the multi-channel analyser 14452-61 PC, Windows XP or higher This experiment is included in the upgrade set XRM 4.0 X-ray material analysis. Fig. 1: P2544001 www.phywe.com P2544001 PHYWE Systeme GmbH & Co. KG All rights reserved 1

TEP X-ray fluorescence analysis - Tasks 1. Record the spectra of the fluorescence radiation that is generated by the metal samples. 2. Determine the channel numbers of the intensity maxima of the characteristic lines of the corresponding fluorescence radiation. 3. Represent the predefined line energies as a function of the channel numbers in a graphical form for two different gain factors of the multichannel analyser. Set-up - Screw the adapter ring onto the inlet tube of the energy detector. - Connect the signal and supply cables to the corresponding ports of the detector with the aid of the right-angle plugs. - Connect the signal and supply cables to the corresponding ports in the experiment chamber of the X-ray unit. In Figure 2, the port for the signal cable is marked in red and the port for the supply cable is marked in green. Connect the external X RED ports of the x-ray unit (see Fig. 3) to the multi-channel analyser (MCA). Connect the signal cable to the Input port and the supply cable to the X-Ray Energy Det. port of the MCA. - Secure the energy detector in the holder of the swivel arm of the goniometer. Lay the two cables with sufficient length so that the goniometer can be swivelled freely over the entire swivelling range. - Connect the multi-channel analyser and computer with the aid of the USB cable. Fig. 2: Connectors in the experiment chamber Fig. 3: Connection of the multi-channel analyser X-ray energy detector Procedure - Insert the diaphragm tube with the 2-mmaperture. - Bring the goniometer block and the detector to their respective end positions on the left. Bring the detector to the 90 position in the 2:1 coupling mode - Insert the metal sample with the universal crystal holder (sample is at 45 ). - Operating data of the copper X-ray tube: Set an anode voltage U a = 35 kv and the anode current so that the counting rate for each of the samples is 300 c/s (selectthe m axim um anode current for the tin and silver samples). Fig. 4: Goniometer set-up Universal crystal holder with metal sample End position of the goniometer on the left 2 PHYWE Systeme GmbH & Co. KG All rights reserved P2544001

X-ray fluorescence analysis - TEP Confirm the operating data by pressing the ENTER button. - Lock the sliding door of the X-ray unit. - In the measure program, select Multi-channel analyser under Gauge. Then, select Spectra recording. Set XData = channel number and Interval width [channels] = 1 channel. Set the offset so that low-energy noise signals will be suppressed (usually 5% are sufficient). - Gain = 2 (select gain level 4 for the second measurement series). - Measuring time: 3 minutes (5 minutes for the Ag sample). Use the timer of the X-ray unit for this purpose. Note A tin sample can be produced easily based on commercially available soldering tin for electronic applications. Melt a small bead of tin off the tin wire with the aid of a lighter or soldering iron and let it drop to the floor. The resulting small pancake can be used as the sample. Fluorescence lines of the alloy components of the soldering tin will be ignored for the evaluation. Theory The energy analysis of X-rays with the aid of semiconductor detectors is described briefly based on the example of a Si-pin-detector (p-contact - intrinsic - n-contact). Incident X-ray quanta with a sufficient level of energy create free electrons in the Si crystal due to the photoelectric effect. The kinetic energy of these electrons correlates with the energy of the X-ray quanta. Apart from the phonon excitation, the electrons also create electron-hole pairs on their way through the depletion layer of the semiconductor. The number of these electron-hole pairs is a measure of the energy of the incident quantum. Holes and electrons are withdrawn by voltage that is applied externally and, thereby, create a charge pulse. The magnitude of the charge pulse, on the other hand, is a measure of the energy of the incident X-ray quantum. The resulting pulse height spectrum will then be analysed by a multi-channel analyser, in which various pulse heights are assigned to different channels. Pulses of the same voltage level will be added up in the same channel. In a last step, an energy value must also be assigned to the pulse height (= channel number). This energy calibration can be performed as it is done here with the aid of the characteristic lines and the known energy levels of the X-ray fluorescence radiation. Evaluation Evaluation of the measurement curves - In order to determine the line position, switch from the bar display to the curve display. To do so, click Display options and then Interpolation and straight lines. Figure 5a shows the result concerning the spectrum of the zinc sample. K β Fig. 5a: Fluorescence spectrum of zinc, gain level 2 - Extend the relevant line section with the aid of the zoom function. - Then, select the various curve sections with, open the window Function fitting. Then, select Scaled normal distribution (see Fig. 5b). - Hide the original measurement curve and reselect the sections of the normal distributions. Find the line centroids of the normal distributions with Peak analysis (see Fig. 5c) or determine them with the function Survey. K α www.phywe.com P2544001 PHYWE Systeme GmbH & Co. KG All rights reserved 3

TEP X-ray fluorescence analysis - K α K β Fig. 5b: Fluorescence lines of zinc with a fitted normal distribution Fig. 5c: Normal distribution of the zinc fluorescence lines for determining their channel position (original measurement curve not shown) Task 1: Record the spectra of the fluorescence radiation that is generated by the metal samples. As an example of measurements with gain level 4 of the multichannel analyser, Figure 6 shows the fluorescence spectrum of a copper sample. Task 2: Determine the channel numbers of the intensity maxima of the characteristic lines of the corresponding fluorescence radiation. The following table shows the results of various spectra for two different gain levels of the analyser. The values that are stated for the K α lines are the mean energy values of the K α1 and K α2 lines. Since the X-ray unit can only supply radiation with a maximum energy of 35 kev, analyses with gain level 1 of the multi-channel analyser are not useful in this case. Fig. 6: Fluorescence lines of copper with a fitted normal distribution, gain level 4. 4 PHYWE Systeme GmbH & Co. KG All rights reserved P2544001

X-ray fluorescence analysis - TEP Table: Relationship between the energy* and channel number A B C D E Gain level 2 Gain level 4 Element Line E / kev Channel number Channel number Fe K α 6.40 596 1402 Fe K β1 7.06 680 1564 Ni K α 7.47 731 1671 Cu K α 8.04 802 1813 Ni K β1 8.26 828 1857 Zn K α 8.63 877 1973 Cu K β1 8.90 909 2027 Zn K β 9.57 995 2208 Ag K α 22.08 2595 Ag K β1 24.94 2958 (* energy values from Handbook of Chemistry and Physics, CRC-Press, USA) Task 3: Represent the predefined line energies as a function of the channel numbers in a graphical form for two gain factors of the multi-channel analyser. The table values of the energy of the fluorescence lines are shown in Figure 7 (gain level 4) and Figure 8 (gain level 2) as a function of the associated channel numbers that were determined during the experiment. In their mathematical form, the regression lines that are added help in precisely determining the energy level of an unknown radiation based on the associated channel number. A line with the channel number x, for example, has an energy of E = (0.00434 x +0.674) kev in accordance with Figure 7. Fig. 7: Straight calibration line for gain level 4 of the multi-channel analyser www.phywe.com P2544001 PHYWE Systeme GmbH & Co. KG All rights reserved 5

TEP X-ray fluorescence analysis - Fig. 8: Straight calibration line for gain level 2 of the multi-channel analyser 6 PHYWE Systeme GmbH & Co. KG All rights reserved P2544001