Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Similar documents
Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Example 17.3 Analyse the rigid frame shown in Fig a. Moment of inertia of all the members are shown in the figure. Draw bending moment diagram.

MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD

SLOPE-DEFLECTION METHOD

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Moment Distribution Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Lecture 11: The Stiffness Method. Introduction

UNIT-IV SLOPE DEFLECTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

Structural Analysis III Moment Distribution

Chapter 2 Basis for Indeterminate Structures

Structural Analysis III Moment Distribution

Moment Area Method. 1) Read

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Methods of Analysis. Force or Flexibility Method

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.


Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

14. *14.8 CASTIGLIANO S THEOREM

Continuous Beams - Flexibility Method

Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

Chapter 2: Deflections of Structures

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

Method of Consistent Deformation

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

3.4 Analysis for lateral loads


Chapter 4.1: Shear and Moment Diagram

FIXED BEAMS IN BENDING

FIXED BEAMS CONTINUOUS BEAMS

6. Bending CHAPTER OBJECTIVES

Internal Internal Forces Forces

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 5A - MOMENT DISTRIBUTION METHOD

P.E. Civil Exam Review:

7 STATICALLY DETERMINATE PLANE TRUSSES

BEAM DEFLECTION THE ELASTIC CURVE

6. KANIS METHOD OR ROTATION CONTRIBUTION METHOD OF FRAME ANALYSIS

Mechanical Design in Optical Engineering

FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE

Lecture 8: Flexibility Method. Example

Section 6: PRISMATIC BEAMS. Beam Theory

M.S Comprehensive Examination Analysis

T2. VIERENDEEL STRUCTURES

k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1.

7.4 The Elementary Beam Theory

DEFLECTION CALCULATIONS (from Nilson and Nawy)

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Ph.D. Preliminary Examination Analysis

A New Jacobi-based Iterative Method for the Classical Analysis of Structures

Moment Distribution The Real Explanation, And Why It Works

Module 1. Energy Methods in Structural Analysis

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions

STATICALLY INDETERMINATE STRUCTURES

CHAPTER 4: BENDING OF BEAMS

Indeterminate Analysis Force Method 1

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

FRAME ANALYSIS. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

Preliminaries: Beam Deflections Virtual Work

Where and are the factored end moments of the column and >.

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

MECHANICS OF MATERIALS

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Portal Frame Calculations Lateral Loads

Shear Force V: Positive shear tends to rotate the segment clockwise.

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE. National aerospace university Kharkiv Aviation Institute. Department of aircraft strength

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Determinate portal frame

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Tutorial #1 - CivE. 205 Name: I.D:

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

MECHANICS OF MATERIALS. Analysis of Beams for Bending

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

4.3 Moment Magnification

2 marks Questions and Answers

Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin

Slender Structures Load carrying principles

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

Transcription:

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod

Lesson 21 The oment- Distribution ethod: rames with Sidesway

Instructional Objectives After reading this chapter the student will be able to 1. Extend moment-distribution method for frames undergoing sidesway. 2. Draw free-body diagrams of plane frame. 3. Analyse plane frames undergoing sidesway by the moment-distribution method. 4. Draw shear force and bending moment diagrams. 5. Sketch deflected shape of the plane frame not restrained against sidesway. 21.1 Introduction In the previous lesson, rigid frames restrained against sidesway are analyzed using moment-distribution method. It has been pointed in lesson 17, that frames which are unsymmetrical or frames which are loaded unsymmetrically usually get displaced either to the right or to the left. In other words, in such frames apart from evaluating joint rotations, one also needs to evaluate joint translations (sidesway). or example in frame shown in ig 21.1, the loading is symmetrical but the geometry of frame is unsymmetrical and hence sidesway needs to be considered in the analysis. The number of unknowns is this case are: joint rotations θ B and θ C and member rotationψ. Joint B and C get translated by the same amount as axial deformations are not considered and hence only one independent member rotation need to be considered. The procedure to analyze rigid frames undergoing lateral displacement using moment-distribution method is explained in section 21.2 using an example.

21.2 Procedure A special procedure is required to analyze frames with sidesway using momentdistribution method. In the first step, identify the number of independent rotations (ψ ) in the structure. The procedure to calculate independent rotations is explained in lesson 22. or analyzing frames with sidesway, the method of superposition is used. The structure shown in ig. 21.2a is expressed as the sum of two systems: ig. 21.2b and ig. 21.2c. The systems shown in figures 21.2b and 21.2c are analyzed separately and superposed to obtain the final answer. In system 21.2b, sidesway is prevented by artificial support atc. Apply all the external loads on frame shown in ig. 21.2b. Since for the frame, sidesway is prevented, moment-distribution method as discussed in the previous lesson is applied and beam end moments are calculated. ' ' ' ' ' ' Let,,, CB, and DC be the balanced moments obtained by distributing fixed end moments due to applied loads while allowing only joint rotations ( θ B and θ C ) and preventing sidesway. Now, calculate reactions and (ref. ig 21.3a).they are, H A1 H D 1

H + ' ' A 1 + h2 Pa h 2 H D1 ' ' + DC (21.1) h 1 again, R P H A + H ) (21.2) ( 1 D1

In ig 21.2c apply a horizontal force in the opposite direction of R. Now k R, then the superposition of beam end moments of system (b) and k times (c) gives the results for the original structure. However, there is no way one could analyze the frame for horizontal force, by moment-distribution method as sway comes in to picture. Instead of applying, apply arbitrary known displacement / sidesway Δ' as shown in the figure. Calculate the fixed end beam moments in the column and for the imposed horizontal displacement. Since joint displacement is known beforehand, one could use moment-distribution method to analyse this frame. In this case, member rotations ψ are related to joint '' '' '' '' '' '' translation which is known. Let,,, and are the, CB balanced moment obtained by distributing the fixed end moments due to assumed sidesway Δ' at joints B and C. Now, from statics calculate horizontal force due to arbitrary sidesway Δ '. DC

H A2 '' + h 2 '' H D2 '' '' + DC (21.3) h 1 H A + H ) (21.4) ( 2 D2 In ig 21.2, by method of superposition k R or k R / Substituting the values of R and from equations (21.2) and (21.4), P ( H A1 + H D1) k (21.5) ( H + H ) A2 Now substituting the values of,, and in 21.5, D2 H A1 H A2 H D1 H D 2 k ' + ' ' + ' Pa P + + h2 h2 h1 '' + '' '' + '' DC + h2 h1 DC (21.6) Hence, beam end moment in the original structure is obtained as, + k original system( b) system( c) If there is more than one independent member rotation, then the above procedure needs to be modified and is discussed in the next lesson.

Example 21.1 Analyse the rigid frame shown in ig 21.4a. Assume EI to be constant for all members. Also sketch elastic curve. Solution In the given problem, joint C can also rotate and also translate by an unknown amount Δ. This problem has to be solved in two steps. In the first step, evaluate the beam-end moment by preventing the sidesway. In the second step calculate beam end moments by moment-distribution method for known translation (see ig 21.4b). By appropriately superposing the two results, the beam end moment of the original structure is obtained. a) Calculate stiffness and distribution factors K 0. 333EI ; K 0. 25EI ; K CB 0. 25EI ; K 0. 333EI Joint B : K 0. 583EI D 0.571; D 0. 429 Joint C : K 0. 583EI

D 0.429 ; D 0. 571. (1) b) Calculate fixed end moment due to applied loading. CB 0 ; 0 kn.m +10 kn.m ; CB 10 kn.m 0 kn.m ; 0 kn.m. (2) DC Now the frame is prevented from sidesway by providing a support at C as shown in ig 21.4b (ii). The moment-distribution for this frame is shown in ig 21.4c. Let ', ', ' and ' be the balanced end moments. Now calculate DC horizontal reactions at A and D from equations of statics. H A1 ' + ' 3 3.635+ 7.268 3 3.635 KN ( ). 3.636 17.269 H D1 3.635 kn( ). 3

R 10 ( 3.635 + 3.635) 10 kn( ) (3) d) oment-distribution for arbitrary known sidesway Δ '. Since Δ ' is arbitrary, Choose any convenient value. Let 150 Δ ' EI Now calculate fixed end beam moments for this arbitrary sidesway. 6EIψ 6 EI 150 ( ) 100 kn.m L 3 3EI 100 kn.m +100 kn.m (4) DC

The moment-distribution for this case is shown in ig 24.4d. Now calculate horizontal reactions and. H A2 H D 2 52.98 + 76.48 H A2 43.15 kn( ) 3 52.97 + 76.49 H D2 43.15 kn( ) 3 86.30 kn( )

Let k be a factor by which the solution of case ( iii ) needs to be multiplied. Now actual moments in the frame is obtained by superposing the solution ( ii ) on the solution obtained by multiplying case ( iii ) by k. Thus k cancel out the holding force R such that final result is for the frame without holding force. Thus, k R. 10 k 0.1161 (5) 86.13 Now the actual end moments in the frame are, ' + k '' 3.635 + 0.1161( + 76.48) + 5.244 kn.m 7.268 + 0.1161( + 52.98) 1.117 kn.m + 7.268 + 0.1161( 52.98) + 1.117 kn.m 7.269 + 0.1161( 52.97) 13.419 kn.m CB + 7.268 + 0.1161( + 52.97) + 13.418 kn.m + 3.636 + 0.1161( + 76.49) + 12.517 kn.m DC The actual sway is computed as, 150 Δ kδ' 0.1161 EI 17.415 EI The joint rotations can be calculated using slope-deflection equations. 2EI where ψ L + [ 2θ A + θ B 3ψ ] Δ L 2EI + L [ 2θ + θ 3ψ ] B A

In the above equation, except θ A and θ B all other quantities are known. Solving for θ A and θ B, 9.55 θ A 0 ; θ B. EI The elastic curve is shown in ig. 21.4e.

Example 21.2 Analyse the rigid frame shown in ig. 21.5a by moment-distribution method. The moment of inertia of all the members is shown in the figure. Neglect axial deformations. Solution: In this frame joint rotations B and evaluated. C and translation of joint B and C need to be a) Calculate stiffness and distribution factors. At joint B : K 0.333EI ; K 0. 25EI K CB 0.25EI ; K 0. 333EI K 0. 583EI D 0.571 ; D 0.429 At joint C : K 0. 583EI

D CB 0.429 ; D 0.571 b) Calculate fixed end moments due to applied loading. 2 12 3 3 9.0 kn.m ; 9.0 kn.m 2 6 0 kn.m; 0 kn.m CB 0 kn.m; 0 kn.m DC c) Prevent sidesway by providing artificial support at C. Carry out momentdistribution ( i.e. Case shown in ig. 21.5c. A in ig. 21.5b). The moment-distribution for this case is

Now calculate horizontal reaction at A and D from equations of statics. 11.694 3.614 H A 1 + 6 7.347 kn ( ) 6 1.154 0.578 H D 1 0.577 kn ( ) 3 R 12 (7.347 0.577) 5.23 kn( ) d) oment-distribution for arbitrary sidesway Δ '(case B, ig. 21.5c) Calculate fixed end moments for the arbitrary sidesway of 150 Δ '. EI 6 E(2 I) 12EI 150 ψ ( ) + 50 kn.m ; + 50 kn.m ; L 6 6EI

6 EI ( ) 6EI 150 ψ ( ) + 100 kn.m ; DC + 100 kn.m ; L 3 3EI The moment-distribution for this case is shown in ig. 21.5d. Using equations of H A2 H D 2 static equilibrium, calculate reactions and. 32.911+ 41.457 12.395 kn( 6 46.57 + 73.285 39.952 kn( 3 H A 2 H D 2 ) ) ( 12.395 + 39.952) 52.347 kn ( ) e) inal results Now, the shear condition for the frame is (vide ig. 21.5b)

( H A1 + H D1) + k( H A2 + H D2 ) 12 (7.344 0.577) + k(12.395 + 39.952) 12 k 0.129 Now the actual end moments in the frame are, ' + k '' 11.694 + 0.129( + 41.457) + 17.039 kn.m 3.614 + 0.129( + 32.911) 0.629 kn.m 3.614 + 0.129( 32.911) 0.629 kn.m 1.154 + 0.129( 46.457) 4.853 kn.m CB 1.154 + 0.129( + 46.457) + 4.853 kn.m 0.578 + 0.129( + 73.285) + 8.876 kn.m DC The actual sway 150 Δ k Δ' 0.129 EI 19.35 EI The joint rotations can be calculated using slope-deflection equations. or 2E(2I ) + L [ 2θ + θ 3ψ ] A L 12EIψ L 12EIψ [ 2 θ + θ ] + A B 4EI L B 4EI L L 12EIψ L 12EIψ [ 2 θ + θ ] + B A 4EI L 4EI L + 17.039 kn.m

0.629 kn.m ( ) 9 + 0.129(50) 15.45 kn.m ( ) 9 + 0.129(50) 2.55 kn.m 1 change in near end + - change in far end 2 θ A 3EI L 1 (17.039 15.45) + (0.629 + 2.55) 2 0.0 3EI 6 4.769 θ B EI Example 21.3 Analyse the rigid frame shown in ig. 21.6a. The moment of inertia of all the members are shown in the figure.

Solution: a) Calculate stiffness and distribution factors 2EI K 0.392EI ; K 0. 50EI 5.1 K CB 0.50EI ; K 0. 392EI At joint B : K 0. 892EI D 0.439 ; D 0.561 At joint C : K 0. 892EI D 0.561 ; D 0.439 (1) CB b) Calculate fixed end moments due to applied loading. 0 kn.m DC 2.50 kn.m 2.50 kn.m (2) CB c) Prevent sidesway by providing artificial support atc. Carry out momentdistribution for this case as shown in ig. 21.6b.

Now calculate reactions from free body diagram shown in ig. 21.5d.

Column 0 5H + 1.526 + 0.764 + V 0 A A1 1 5H + V 2.29 (3) A1 1 Column H V D D1 2 0 5 1.522 0.762 0 5H V 2.284 D1 2 (4) Beam C 0 2V + 1.522 1.526 10 1 0 V 1 5.002 kn ( ) 1 V 2 4.998 kn ( ) (5) Thus from (3) H A1 1.458 kn( ) from (4) H D1 1.456 kn( ) (6)

0 H + H + R 50 X A1 D1 ( ) R + 5.002 kn (7) d) oment-distribution for arbitrary sidesway Δ '. Calculate fixed end beam moments for arbitrary sidesway of 12.75 Δ ' EI The member rotations for this arbitrary sidesway is shown in ig. 21.6e.

BB" Δ1 Δ ' 5.1 Δ ' ψ ; Δ 1 L L cosα 5 2 Δ ' Δ 2 0.4 Δ ' 5 Δ ' Δ ' ψ ( clockwise ) ; ψ ( clockwise ) 5 5 ψ Δ2 2 Δ 'tan α Δ ' ( counterclockwise ) 2 2 5 6EI 6 E(2 I) 12.75 ψ + 6.0 kn.m L 5.1 5EI + 6.0 kn.m 6EI 6 EI ( ) 12.75 ψ 7.65 kn.m L 2 5EI 7.65 kn.m CB 6EI 6 E(2 I) 12.75 ψ + 6.0 kn.m L 5.1 5EI + 6.0 kn.m DC The moment-distribution for the arbitrary sway is shown in ig. 21.6f. Now reactions can be calculated from statics.

Column 0 5H 6.283 6.567 + V 0 A A1 1 A2 1 5H + V 12.85 (3) Column 0 5H 6.567 6.283 V 0 D D1 2 D2 2 5H V 12.85 (4) Beam C 0 2V1 + 6.567 + 6.567 0 V1 6.567 kn ( ) V 2 6.567 kn( ) ; + (5) Thus from 3 H A2 + 3.883 kn( ) from 4 H D2 3.883 kn( ) (6)

7.766 kn( ) (7) e) inal results k R 5.002 k 7.766 0.644 Now the actual end moments in the frame are, ' + k '' 0.764 + 0.644( + 6.283) + 3.282 kn.m 1.526 + 0.644( + 6.567) 2.703 kn.m 1.526 + 0.644( 6.567) 2.703 kn.m 1.522 + 0.644( 6.567) 5.751 kn.m CB 1.522 + 0.644(6.567) 5.751 kn.m 0.762 + 0.644(6.283) 4.808 kn.m DC The actual sway 12.75 Δ k Δ' 0.644 EI 8.212 EI Summary In this lesson, the frames which are not restrained against sidesway are identified and solved by the moment-distribution method. The moment-distribution method is applied in two steps: in the first step, the frame prevented from sidesway but subjected to external loads is analysed and subsequently, the frame which is undergoing an arbitrary but known sidesway is analysed. Using shear equation for the frame, the moments in the frame is obtained. The numerical examples are explained with the help of free-body diagrams. The deflected shape of the frame is sketched to understand its deformation under external loads.