Memorandum COSOR 97-??, 1997, Eindhoven University of Technology

Similar documents
Maximum Likelihood Estimation

ESS 265 Spring Quarter 2005 Kinetic Simulations

Information Fusion Kalman Smoother for Time-Varying Systems

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

A L A BA M A L A W R E V IE W

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

X-Ray Notes, Part III

Chapter 2: Descriptive Statistics

c- : r - C ' ',. A a \ V

P a g e 5 1 of R e p o r t P B 4 / 0 9

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

STABILITY CRITERIA FOR A CLASS OF NEUTRAL SYSTEMS VIA THE LMI APPROACH

T h e C S E T I P r o j e c t

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS

Probability Distribution (Probability Model) Chapter 2 Discrete Distributions. Discrete Random Variable. Random Variable. Why Random Variable?

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

Physics 120 Spring 2007 Exam #1 April 20, Name

Physics 201 Lecture 15

On Probability Density Function of the Quotient of Generalized Order Statistics from the Weibull Distribution

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

1 Random Variable. Why Random Variable? Discrete Random Variable. Discrete Random Variable. Discrete Distributions - 1 DD1-1

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

THIS PAGE DECLASSIFIED IAW EO 12958

P a g e 3 6 of R e p o r t P B 4 / 0 9

H = d d q 1 d d q N d d p 1 d d p N exp

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

Name of the Student:

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

Clustering Web Access Patterns based on Learning Automata and Fuzzy Logic

A GENERALIZATION OF A CONJECTURE OF MELHAM. 1. Introduction The Fibonomial coefficient is, for n m 1, defined by

PHYSICS 151 Notes for Online Lecture #4

UNIT10 PLANE OF REGRESSION

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

Physics 15 Second Hour Exam

Flow Decomposition and Large Deviations

CHAPTER 10: LINEAR DISCRIMINATION

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n

Normal Random Variable and its discriminant functions

1 Constant Real Rate C 1

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

Suppose we have observed values t 1, t 2, t n of a random variable T.

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Monetary policy and models

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

Central limit theorem for functions of weakly dependent variables

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

Chapter 6 Plane Motion of Rigid Bodies

Set of square-integrable function 2 L : function space F

( ) () we define the interaction representation by the unitary transformation () = ()

PHY2053 Summer C 2013 Exam 1 Solutions

Chapter 3: Vectors and Two-Dimensional Motion

Professor Wei Zhu. 1. Sampling from the Normal Population

Several new identities involving Euler and Bernoulli polynomials

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Detection and Estimation Theory

A DECOMPOSITION METHOD FOR SOLVING DIFFUSION EQUATIONS VIA LOCAL FRACTIONAL TIME DERIVATIVE

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Homework Set 4 Physics 319 Classical Mechanics. m m k. x, x, x, x T U x x x x l 2. x x x x. x x x x

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Response of MDOF systems

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Chapter 8. Linear Momentum, Impulse, and Collisions

MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES

Field due to a collection of N discrete point charges: r is in the direction from

THIS PAGE DECLASSIFIED IAW E

New recipes for estimating default intensities

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

β A Constant-G m Biasing

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie)

Recurrence Relations for Single and Product Moments of Generalized Order Statistics from Extreme Value Distribution

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

EE 410/510: Electromechanical Systems Chapter 3

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

Matrix reconstruction with the local max norm

Universal Gravitation

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

E-Companion: Mathematical Proofs

2 shear strain / L for small angle

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

Variants of Pegasos. December 11, 2009

Executive Committee and Officers ( )

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

THIS PAGE DECLASSIFIED IAW E

Stability Analysis of a Sliding-Mode Speed Observer during Transient State

EECE 301 Signals & Systems Prof. Mark Fowler

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

arxiv: v1 [math.cv] 7 Nov 2018

Transcription:

Meoandu COSOR 97-??, 1997, Endhoven Unvey of Technology The pobably geneang funcon of he Feund-Ana-Badley ac M.A. van de Wel 1 Depaen of Maheac and Copung Scence, Endhoven Unvey of Technology, Endhoven, The Neheland Abac We deve a expeon fo he pobably geneang funcon of he dbuon-fee Feund- Ana-Badley cale ac. Fo h geneang funcon we how how o yeacally copue he exac null dbuon and he oen of he ac whn he copue algeba ye Maheaca. Fnally, we gve a able wh ccal value whch exend he exng able. Keywod Feund-Ana-Badley e, geneang funcon, exac dbuon, oen, copue algeba, nonpaaec ac. 1 Inoducon In h acle we deve a expeon fo he pobably geneang funcon of he dbuon-fee Feund-Ana-Badley ac, whch abbevaed a he FAB ac. Sacally euvalen veon of h ac wee noduced by Feund and Ana (1957) and Ana and Badley (1960). We pleened h geneang funcon n he copue algeba ye Maheaca fo copung he dbuon of he e ac vey uckly. We alo how how o ue he geneang funcon fo copung (hghe) oen of he e ac. In he appendx we peen he Maheaca code fo expandng he geneang funcon, n he econd appendx we gve a able wh ccal value fo he balanced cae whch exend he exng able fo N 0 o N 80. Fo geneal deal abou he FAB ac we efe o Gbbon and Chakabo (199). Seveal ehod have been developed fo copung he null dbuon of he FAB ac. Ana and Badley (1960) and Kanneann (1983) deve ecuence elaon baed on a wodenonal geneang funcon of Eule (1748, anl. 1988). Ohe ehod ae geneal ehod fo copung null dbuon of lnea wo-aple ank e and hence do no ue he pecc chaacec of he FAB ac. Exaple of hee ehod nclude he Pagano and Tchle (1983) appoach baed on chaacec funcon and fa Foue anfo and he newok algoh developed by Meha e al. (1987). Fo a ho decpon of hee ehod we efe o Good (1994). We gve an alenave ehod baed on he wo-denonal geneang funcon n Van de Wel (1996). Th la ehod fa and, alhough no val, vey nuve. We ue exac expeon and do no deal wh oundng eo a oe ecuve ehod do. The Feund-Ana-Badley e Le (X 1 ::: X )and(y 1 ::: Y n ) be ndependen aple fo connuou dbuon funcon. Thu we ay and wll aue ha e do no occu. We conde he cobned aple (X 1 ::: X Y 1 ::: Y n ), N +n. TheFeund-Ana-Badley e a wo-aple cale e. The coepondng e ac dened by: A N NX `1 ` ; N +1 Z` (1) 1 Mak van de Wel, Depaen of Maheac and Copung Scence, Endhoven Unvey oftechnology P. O.Box513 5600 MB Endhoven, The Neheland akvdw@wn.ue.nl 6

whee Z` 1fhe`h ode ac n he cobned aple an X-obevaon and Z` 0 ohewe. Thu, fo h ac he ank coe ae ` 1 ::: N. a(`) ` ; N +1 () Duan (1976) copae he FAB ac wh ohe cale ac lke he Mood cale ac, he Segel-Tukey ac and he Kloz ac (fo deal abou hee e ac: ee Gbbon and Chakabo (199)). I un ou ha he Segel-Tukey ac and FAB ac ae aypocally euvalen n e of (Pan) aypoc elave ecency. The Mood ac and Kloz ac ae oe ecen when he alenave noal (o lgh-aled), whle he Segel-Tukey ac and FAB ac ae oe ecen fo heavy-aled dbuon. The FAB ac aan uch le value han he Mood and Kloz ac. Th boh a copuaonal advanage and a poenal dadvanage egadng he nube of gncance level (fo all aple ze). 3 The pobably geneang funcon Fo () we ee ha fo N even he ank coe ae of he fo ; 1 1 :::N.Wewll nd o be convenen ha he coe ae nege and heefoe we noduce adjued FAB coe: a 0 (`) 8 >< >: ` ; N +1 ` ; N +1 1 + f N even (3) f N odd, ` 1 ::: N: We dene he adjued FAB e ac A 0 N a A N wh he FAB coe eplaced by he adjued FAB coe. The ac A 0 N, of coue, acally euvalen oa N.Fo N even, we ay pl he e of adjued coe fa 0 (1) ::: a 0 (N)g no wo e of Wlcoxon coe f1 ::: 1 Ng, whch he an dea behnd ou appoach. Wh he ad of h obevaon we found he followng heoe fo he cae N even: Theoe 3.1 Unde H 0, N + n even and n he pobably geneang funcon of he Feund-Ana-Badley ac whee 0 1 k0 P(A N k) x k 1 ; N X 0 c() c( ; ) N Q `1 (1;`) Q `1 (1;`)Q ; `1 (1;`) fo >0 and c() (+1) : N (4) ; Poof: Aue, whou lo of genealaon, ha n. We dene R a he ank coe n he pooled aple coepondng o X 1 :::. Slaly, S j he ank coe coepondng o Y j j 1 ::: n. We know ha unde H 0 evey conguaon of R 1 ::: R S 1 ::: S n eupobable. Le T (a) be he half of a conguaon a. We can paon hee conguaon no clae of conguaon wh R' n T (a),. The cla of conguaon wh R' n T (a) called C. We denoe he eleen of T (a) by R u1 :::R u S v1 ::: S vn;, whee u 1 ::: u and v 1 ::: v N; ae ubeuence of 1 ::: and 1 ::: n, epecvely. We dene he followng Wlcoxon ac: W N; X j1 R uj and W ; N;+ ; X j1 R u+j : 7

We need o pove he condonal ndependence of W N; and W ; N;+, gven C. Le K 1 (a) be he cla of ' fo whch he half eual he half of a conguaon a. Slaly, le K (a) be he cla of ' fo whch he econd half eual he econd ; ; half of a. We noe ha N he even a euvalen ok 1 (a) \ K (a). Thee ae N ; conguaon n C. They ae eupobable unde H 0,o Unde H 0 wehave, P( K 1 (a)j C ) P( K (a)j C ) P( aj C ) 8 < : ( 1 f a C ( N )( ;) N 0 f a 6 C. #(:K 1(a)\C ) #(:C ) ( ;) N ( N )( ;) 1 f a C N ( N ) 0 f a 6 C, ( 1 ( N f a C ;) 0 f a 6 C. (5) (6) Cobnng (5) and (6) we conclude ha P( K 1 (a) \ K (a)j C )P( aj C ) P( K 1 (a)j C )P( K (a)j C ): (7) Le 1 be a conguaon of R' and N ; S' and le be a conguaon of ; R' and N ; + S'. Fo j 1 : P( K j (a)j C )f P( j a j) (8) whee a j he jh (j 1 ) half of he conguaon a. The ybol P denoe he pobably eaue on he pace wh conguaon of lengh N, wheea P f denoe he pobably eaue on he pace wh conguaon of lengh N: The ac W N; and W ; N;+ ae funcon of 1 and,epecvely. Becaue of eualy (8)weayegad W N; and W ; N;+ a funcon of all ' fo whch C. Snce euaon (7) ell u ha, gven C, he even f K 1 (a)g and f K (a)g ae ndependen, we conclude ha W N; and W ; N;+ ae alo ndependen, gven C. The e of adjued FAB coe con of wo dencal e of Wlcoxon coe. When coe of he e ae agned o he X', we knowha ; coe of he econd e ae agned o he X', 0. The u of he coe agned o X' eual A 0 N and alo eual he u of W N; and W ; N;+. Theefoe, #(A 0 N k) P 0 #(W N; + W ; N;+ k). Le H Z be a geneang funcon fo he nube of way a ac Z can each a cean value. Then, H A 0 N X k0 X 0 k0 0 #(A 0 N k) x k X k0 0 #(W N ; + W ; N ;+ k) xk H W N ; H W ; N ;+ #(W N ; + W ; N ;+ k) xk X 0 H W N ; +W ; N ;+ whee n he la ep we ued ha W N ; and W ; N ;+ ae ndependen. The geneang funcon H Wa b can ealy be deved fo he geneang funcon of he euvalen Mann-Whney (9) 8

ac M a b.weknowhaw a b M a b + 1 a(a+1) and fo Andew (1976, Ch. 3) and Davd and Baon (196, pp. 03-04) we knowha Theefoe, H Ma b H Wa b c(a) a + b : a a + b : (10) a Subung (10) no (9) wh (a b) ( N ; ) and(a b) ( ; N ; + ) gve u H A 0. N We coplee ou poof by eakng ha fo N even, A N A 0 N ;. Theoe 3. Unde H 0, N + n odd and n he pobably geneang funcon of he Feund-Ana-Badley ac whee k0 P(A N k) x k ; 1 X N 1 j0 and c() a n Theoe 3.1. ;j X 0 N;1 c() c( ; j ; ) N;1 ; j ; Poof: The poof la o ha of Theoe 3.1, bu now we deal wh wo dencal e of Wlcoxon coe and one coe ha eual o zeo. Th poble olved by ung ove a vaable j ha eual 1 f zeo agned o an X-obevaon and ha eual 0 ohewe. So fo j 0we oban all poble value of A 0 N wh coe n he wo dencal e and fo j 1 we oban all poble value of A 0 N wh ; 1 coe n he wo dencal e. 4 Moen of he FAB ac Foula (4) and (11) ell u ha fo copung oen of he FAB ac uce o copue devave of he expeon V () d() whee d() a ne u of e of he fo c z whee c and z ae aonal. If we denoe he kh devave off() by f (k) () hen we ee ha V (k) () Xk; kx j0 0 k k ; ; j j d (k;;j) () () (j) Snce d() a ne u of e of he fo c z whee c and z ae aonal, aghfowad o copue d (`) (1) fo ` abay lage. The wo ohe e n he gh hand de of (1) ae polynoal, o we ayake he! 1 and we nd he followng expeon fo he kh devave ofv () a 1: V (k) (1) Xk; kx j0 0 k k ; ; j j d (k;;j) (1)!1 ()!1 (j) D Bucchanco (1996) povde a ehod fo copung expeon of he fo ()!1 wh he ad of he copue algeba package Maheaca. We ued h ehod fo copung oen of he FAB ac. (11) (1) (13) 9

4.1 Exaple A an lluaon we copue he ean fo he cae N even. In h cae k 1, o afe expandng (13) we ge 0 V 0 (1) d(1)!1 ; N ;1 1 In h cae d() d 0 (1)!1!1!1 + d(1)!1 (+1)+ 1 (;)(;+1);,od(1) ; N!1 0 + ;1 and d 0 (1) ; N (14) ;1( 1 ( + 1) + 1 ( ; )( ; +1); ) 1 ; N ;1( + ; ). Fo he exaple n D Bucchanco (1996,p. 9) we exac ha!1 and 0 1!1 ( ; ): The ae euaon hold fo eplaced by. In euaon (4) we eeha N and ;. Subung n (14) leave u afe oe labou ; V 0 (1) N;N ; N ; N (15) 4 The la hng we have odoungove and we ge he ean AN AN X 0 N ; N ; N 4 ; N fo N even: ; N 4 (16) P ; N ; N ; whee we ue he fac ha 0 ; N whch a pecal cae of he Chu-VandeMonde foula. Fo a coplee poof: ee (Chu 1303, anl. 1959) o Rodan (1979).. 4. Exaple of a hghe oen We gve EA 5 N, he fh oen ofhefab ac fo N even. I ook 80 econd o copue h oen on a SunSpac 10. EA 5 N P( n) 307 ( + n ; 3) ( + n ; 1) wh P ( n) 3 11 + 10 (;1+1n)+ 9 ; ;111 ; 6 n +63n + 8 ; 480 ; 705 n ; 10 n +105n 3 + 7 ; 130 + 118 n ; 1855 n ; 90 n 3 + 105 n 4 + 6 ; ;670 + 7804 n +340n ; 585 n 3 +0n 4 +63n 5 + 5 ; ;4560 ; 416 n +17804n + 098 n 3 ; 005 n 4 +78n 5 +1n 6 + 4 ; 38400 ; 3196 n ; 30416 n +1975n 3 ; 48 n 4 ; 811 n 5 +48n 6 +3n 7 + 3 ; ;10368 + 10510 n ; 6896 n ; 1364 n 3 +1067n 4 ; 8 n 5 ; 15 n 6 +10n 7 + ; ;7378 + 7968 n +9075n ; 5051 n 3 + 147 n 4 + 04 n 5 ; 60 n 6 +5n 7 + ; 5596 ; 133888 n + 6419 n +0768n 3 ; 14384 n 4 +183n 5 ; 36 n 6 ; n 7 + 16896 n ; 60160 n + 8544 n 3 ; 364 n 4 ; 3 n 5 +16n 6 Skech of he poof: dene a geneang funcon wh coecen eual o he lef-hand de of he eualy and wh ung vaable. Then ue he convoluon heoe o pl he u no a poduc of wo u. Fnally, ue he bnoal heoe o oban he deed eul. 10

5 Copue algeba Th econ conan he ex of he Maheaca package we ued fo copung he dbuon of he FAB ac by ung Theoe 3.1 and 3.. We alo gve a all exaple. FABevengf[N_,_]: Expand[Splfy[1/Bnoal[N,]*^(-(/))* (Su[c[]*c[-]*Poduc[1-^l,{l,N/}]/(Poduc[1-^l,{l,}]* Poduc[1-^l,{l,N/-}])*Poduc[1-^l,{l,N/}]/ (Poduc[1-^l,{l,-}]*Poduc[1-^l,{l,N/-(-)}]),{,-1}] + (*c[])*poduc[1-^l,{l,n/}]/ (Poduc[1-^l,{l,}]*Poduc[1-^l,{l,N/-}]))]] FABoddgf[N_,_]: Expand[Splfy[1/Bnoal[N,]* Su[Su[c[]*c[-j-]*Poduc[1-^l,{l,(N-1)/}]/ (Poduc[1-^l,{l,}]*Poduc[1-^l,{l,(N-1)/-}])* Poduc[1-^l,{l,(N-1)/}]/(Poduc[1-^l,{l,-j-}]* Poduc[1-^l,{l,(N-1)/-(-j-)}]),{,-j-1}] + (*c[-j])*poduc[1-^l,{l,(n-1)/}]/(poduc[1-^l,{l,-j}]* Poduc[1-^l,{l,(N-1)/-(-j)}]),{j,0,1}]]] c[_]: ^((1/)**(+1)) Noe ha he cae 0 and ;j ae pl o, becaue we have o ell Maheaca explcly ha 0 1. The conbuon of hee cae o he u eual. The Maheaca funcon Expand and Splfy ae ued o copue he full polynoal whch epeen he dbuon of he FAB ac. The followng exaple gve he dbuon of he FAB ac fo n 4. FABevengf[8,4] 4 5 6 7 8 9 10 11 1 9 6 9 6 9 -- + ---- + ---- + ---- + ---- + ---- + ----- + ----- + --- 70 35 70 35 35 35 70 35 70 6 Table of ccal value Wh he ad of Theoe 3.1 and 3. we wee able o exend he exng able of ccal value. Ana and Badley (1960) gve ccal value fo N 0. We gve able fo n N 80. Fo paccal eaon we dd no pn he unbalanced cae. Anyone neeed n ccal value fo an unbalanced cae ay conac he auho. Acknowledgeen I would lke o hank Aleando D Bucchanco fo he dcuon and coecon and fo povdng he Maheaca package fo copung oen of he Mann-Whney ac. 11

n 0:005 0:01 0:05 0:05 0:1 0:1 0:05 0:05 0:01 0:005 4 4 4 5 11 1 1 5 6:5 7:5 7:5 8:5 16:5 17:5 17:5 18:5 6 9 10 11 1 13 3 4 5 6 7 7 13:5 14:5 15:5 17:5 18:5 30:5 31:5 33:5 34:5 35:5 8 19 0 3 5 39 41 4 44 45 9 5:5 6:5 8:5 30:5 3:5 48:5 50:5 5:5 54:5 55:5 10 33 34 36 38 40 60 6 64 66 67 11 40:5 4:5 44:5 46:5 49:5 71:5 74:5 76:5 78:5 80:5 1 49 51 54 57 60 84 87 90 93 95 13 59:5 61:5 64:5 67:5 70:5 98:5 101:5 104:5 107:5 109:5 14 70 7 76 79 83 113 117 10 14 16 15 81:5 83:5 88:5 91:5 95:5 19:5 133:5 136:5 141:5 143:5 16 93 97 101 105 110 146 151 155 159 163 17 106:5 110:5 115:5 119:5 14:5 164:5 169:5 173:5 178:5 18:5 18 11 15 130 135 141 183 189 194 199 03 19 136:5 140:5 146:5 151:5 157:5 03:5 09:5 14:5 0:5 4:5 0 15 156 163 169 175 5 31 37 44 48 1 169:5 173:5 180:5 186:5 193:5 47:5 54:5 60:5 67:5 71:5 187 19 199 06 14 70 78 85 9 97 3 05:5 11:5 19:5 6:5 34:5 94:5 30:5 309:5 317:5 33:5 4 5 31 40 47 56 30 39 336 345 351 5 45:5 5:5 61:5 69:5 78:5 346:5 355:5 363:5 37:5 379:5 6 67 74 84 9 30 374 384 39 40 409 7 89:5 96:5 307:5 315:5 36:5 40:5 413:5 41:5 43:5 439:5 8 313 31 331 341 35 43 443 453 463 471 9 337:5 345:5 356:5 366:5 378:5 46:5 474:5 484:5 495:5 503:5 30 363 371 383 393 406 494 507 517 59 537 31 388:5 397:5 410:5 41:5 433:5 57:5 539:5 550:5 563:5 57:5 3 416 45 438 450 463 561 574 586 599 608 33 443:5 453:5 467:5 479:5 493:5 595:5 609:5 61:5 635:5 645:5 34 473 483 497 510 55 631 646 659 673 683 35 50:5 513:5 58:5 541:5 556:5 668:5 683:5 696:5 711:5 7:5 36 534 544 560 574 590 706 7 736 75 76 37 565:5 576:5 593:5 607:5 64:5 744:5 761:5 775:5 79:5 803:5 38 598 610 67 64 659 785 80 817 834 846 39 631:5 643:5 661:5 677:5 695:5 85:5 843:5 859:5 877:5 889:5 40 666 679 697 714 73 868 886 903 91 934 Table 1: Lef and gh ccal value fo he Feund-Ana-Badley e, n. 1

Refeence Andew, G.E. (1981), The heoy of paon, Encyclopeda of aheac and applcaon (Addon-Weley, Readng, nd ed.). Ana, A.R. and R.A. Badley (1960), Rank u e fo dpeon, Ann. Mah. Sa. 31, 1174-1189. Chu Ch-Ke (1303), Manucp, Chna, n: J. Needha, Scence and Cvlzaon n Chna 3 (Cabdge Unvey Pe, Cabdge, 196). Davd, F.N. and D.E. Baon (196), Cobnaoal chance (Chale Gn & Co., London) D Bucchanco, A. (1996), Cobnaoc, copue algeba and he Wlcoxon-Mann-Whney e, Tech. Rep. COSOR 96-4 (Endhoven Unvey of Technology, Endhoven). Duan, B.S. (1976), A uvey of nonpaaec e fo cale, Co. Sa.{Theoy Mehod A5, 187-131. Eule, L. (1748), Inoduco n analyn nnou, n: Inoducon o analy of he nne (Spnge, New Yok, 1988). Feund, J.E. and A.R. Ana (1957), Two-way ank u e fo vaance, Vgna Polyechnc Inue Techncal Repo o Oce of Odnance Reeach and Naonal Scence Foundaon 34. Gbbon, J.D. and S. Chakabo (199), Nonpaaec acal nfeence (Macel Dekke, New Yok, 3d ed.). Good, P.I. (1994), Peuaon e, a paccal gude o eaplng ehod fo eng hypohee (Spnge-Velag, New Yok). Kanneann, K. (1983), A unfyng, analyc odel fo cean lnea ank e II. Exac dbuon algoh, Boecal J. 5, 73-730. Meha, C.R., N.R. Pael and L.J. We (1987), Conucng exac gncance e wh eced andozaon ule, Boeka 75(), 95-30. Pagano, M. and D. Tchle (1983), On obanng peuaon dbuon n polynoal e, J. Ae. Sa. Aoc. 78, 435-441. Rodan, J. (1979), Cobnaoal dene (Wley, 1979, nd ed.). van de Wel, M.A. (1996), Exac dbuon of nonpaaec ac ung copue algeba, Mae' he, (Endhoven Unvey of Technology, Endhoven). 13