ELECTROSTATICS - II : Electric Field

Similar documents
1. ELECTRIC CHARGES AND FIELDS

Current Loop as a Magnetic Dipole & Dipole Moment:

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields

Introductory Physics for Scientists and Engineers (II) PHY2049

Downloaded from

Chapter 16 Electric Charge and Electric Field

Summary of electrostatics

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References

Chapter 17 & 18. Electric Field and Electric Potential

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

27 the electric field

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Chapter 16. Properties of Electric Charge. Electric Charge. The Milikan Experiment. Properties of Electric Charge, continued

Welcome to PHYS2002!

Chapter 23. Electric Fields

Electric Fields Part 1: Coulomb s Law

ELECTRIC FORCES AND ELECTRIC FIELDS

CPS lesson Electric Field ANSWER KEY

Class XII Chapter 1 Electric Charges And Fields Physics

Welcome. to Electrostatics

2: What is the magnitude of the electric charge of an electron? 3: What is the law of conservation of electric charge?

Chapter 19 Electric Charges, Forces, and Fields

21.4 Electric Field and Electric Forces

PHYS 1441 Section 002 Lecture #6

Chapter 21: Gauss s Law

Book page. Coulombs Law

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Chapter 23. Electric Fields Properties of Electric Charges Coulomb s Law The Electric Field Electric Field Lines

Physics II (PH2223) Physics for Scientists and Engineers, with Modern Physics, 4th edition, Giancoli

Electrostatics. Electrical properties generated by static charges. Introduction

Physics 1214 Chapter 17: Electric Charge and Electric Field

Electric field Physics 122

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

free space (vacuum) permittivity [ F/m]

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian

Chapter 16 Electric Charge and Electric Field

3/22/2016. Chapter 27 Gauss s Law. Chapter 27 Preview. Chapter 27 Preview. Chapter Goal: To understand and apply Gauss s law. Slide 27-2.

Electric flux. You must be able to calculate the electric flux through a surface.

Chapter 15. Electric Forces and Electric Fields

Introduction. Strand G Unit 1: Electrostatics. Learning Objectives. Introduction.

Chapter 15. Electric Forces and Electric Fields

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics

Test Review FQ3eso_U5_3_Electric force

Chapter 1 The Electric Force

SELAQUI INTERNATIONAL SCHOOL, DEHRADUN

q C e C k (Equation 18.1) for the distance r, we obtain k (Equation 18.1), where Homework#1 3. REASONING

2 The Electric Field: Description and Effect

Chapter 18 Electrostatics Electric Forces and Fields

CHAPTER 15 PRE-TEST: ELECTRIC FORCE AND FIELDS

1/11/12. A Scalar Field. The Electric Field + + A Vector Field

Electric Force. A collection of 4 charges, each with +1e. equivalent to a charge with +4e. Given two objects with charges q 1 & q 2 : k e q 1 q 2

Lecture 29. PHYC 161 Fall 2016

PHYS 1444 Section 02. Lecture #3

PH 222-3A Spring 2007

Ch 16 practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Lecture PowerPoints. Chapter 16 Physics: Principles with Applications, 6 th edition Giancoli

3 Chapter. Gauss s Law

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

+2Q -2Q. (a) 672 N m 2 /C (b) 321 N m 2 /C (c) 105 N m 2 /C (d) 132 N m 2 /C (e) 251 N m 2 /C

Physics 11 Chapter 18: Electric Forces and Electric Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields

Electricity. Revision Notes. R.D.Pilkington

PHYSICS. Chapter 24 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged?

Lecture Outline Chapter 19. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16

Chapter 1 Electric Charges, Forces, and Fields

Notice that now the electric field is perpendicular to the x=axis. It has magnitude

PHYS 2426 Brooks INTRODUCTION. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture Power Points. Chapter 16 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 16 Physics: Principles with Applications, 7 th edition Giancoli

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

Electrostatics : Electric Field & Potential

General Physics II. Electric Charge, Forces & Fields

Section 1: Electric Fields

Lecture PowerPoints. Chapter 16 Physics: Principles with Applications, 6 th edition Giancoli

Electric Field Lines. lecture 4.1.1

Essential University Physics

Reading: Chapter 28. 4πε r. For r > a. Gauss s Law

Chapter 23. Electric Fields

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Electric Charge and Electric Field

Electric Force and Electric Field

Chapter (2) Gauss s Law

AP Physics C - E & M

Where, ε 0 = Permittivity of free space and = Nm 2 C 2 Therefore, force

ELECTROSTATIC CBSE BOARD S IMPORTANT QUESTIONS OF 1 MARKS

Module 2 : Electrostatics Lecture 6 : Quantization Of Charge

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS

Electric Charges and fields

Physics Test Review Electrostatics, Electric Fields and Potential Session: Name:

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2

CHAPTER 15 ELECTRIC FORCE & FIELDS

Physics 2212 K Quiz #1 Solutions Summer 2015

Electric Field and Gauss s law. January 17, 2014 Physics for Scientists & Engineers 2, Chapter 22 1

Tridib s Physics Tutorials. NCERT-XII / Unit- 4 Moving charge and magnetic field

Uniform Electric Fields

Downloaded from

Chapter 21. Electric Fields

Transcription:

LCTROSTATICS II : lectric Field. lectric Field 2. lectric Field Intensity or lectric Field Strength 3. lectric Field Intensity due to a Point Charge 4. Superposition Principle 5. lectric Lines of Force i) Due to a Point Charge ii) Due to a Dipole iii) Due to a qual and Like Charges iv) Due to a Uniform Field 6. Properties of lectric Lines of Force 7. lectric Dipole 8. lectric Field Intensity due to an lectric Dipole 9. Torque on an lectric Dipole 0.Work Done on an lectric Dipole

lectric Field: lectric field is a region of space around a charge or a system of charges within which other charged particles experience electrostatic forces. Theoretically, electric field extends upto infinity but practically it is limited to a certain distance. lectric Field Strength or lectric Field Intensity or lectric Field: lectric field strength at a point in an electric field is the electrostatic force per unit positive charge acting on a vanishingly small positive test charge placed at that point. q q 0 q q 0 F F q Source charge, q 0 Test charge, F Force & Field = Lt F F or = q 0 q q 0 or = q r 2 r The test charge is considered to be vanishingly small because its presence should not alter the configuration of the charge(s) and thus the electric field which is intended to be measured.

Note:. Since q 0 is taken positive, the direction of electric field ( ) is along the direction of electrostatic force ( F ). 2. lectrostatic force on a negatively charged particle will be opposite to the direction of electric field. 3. lectric field is a vector quantity whose magnitude and direction are uniquely determined at every point in the field. 4. SI unit of electric field is newton / coulomb ( N C ).

lectric Field due to a Point Charge: Force exerted on q 0 by q is Y or F = F = q q 0 r 2 q q 0 r 3 r r q O r q 0 F P (x,y,z) X lectric field strength is or (r) = (r) = = q F q 0 r 3 r 2 r q r Z The electric field due to a point charge has spherical symmetry. If q > 0, then the field is radially outwards. If q < 0, then the field is radially inwards. 0 r 2

lectric field in terms of coordinates is given by (r) = q ( x 2 y 2 z 2 ) 3/2 ( x i y j z k ) Superposition Principle: F 4 The electrostatic force experienced by a charge due to other charges is the vector sum of electrostatic forces due to these other charges as if they are existing individually. F 2 q 5 q F 5 q 2 F 3 F = F 2 F 3 F 4 F 5 q 4 q 3 F a (r a ) = N b= b a r q a q a r b b r a r b 3 In the present example, a = and b = 2 to 5. If the force is to be found on 2 nd charge, then a = 2 and b = and 3 to 5. F 3 F 2 F 5 F F 4

Note: The interactions must be on the charge which is to be studied due to other charges. The charge on which the influence due to other charges is to be found is assumed to be floating charge and others are rigidly fixed. For eg. st charge (floating) is repelled away by q 2 and q 4 and attracted towards q 3 and q 5. The interactions between the other charges (among themselves) must be ignored. i.e. F 23, F 24, F 25, F 34, F 35 and F 45 are ignored. Superposition principle holds good for electric field also. lectric Lines of Force: An electric line of force is an imaginary straight or curved path along which a unit positive charge is supposed to move when free to do so in an electric field. lectric lines of force do not physically exist but they represent real situations. lectric Lines of Force

. lectric Lines of Force due to a Point Charge: q > 0 q < 0 a) Representation of electric field in terms of field vectors: The size of the arrow represents the strength of electric field. b) Representation of electric field in terms of field lines (asy way of drawing)

2. lectric Lines of Force due to a pair of qual and Unlike Charges: (Dipole) 3. lectric Lines of Force due to a pair of qual and Like Charges: q P q.n q q lectric lines of force contract lengthwise to represent attraction between two unlike charges. lectric lines of force exert lateral (sideways) pressure to represent repulsion between two like charges.

4. lectric Lines of Force due to a Uniform Field: Properties of lectric Lines of Force or Field Lines:. The electric lines of force are imaginary lines. 2. A unit positive charge placed in the electric field tends to follow a path along the field line if it is free to do so. 3. The electric lines of force emanate from a positive charge and terminate on a negative charge. 4. The tangent to an electric field line at any point gives the direction of the electric field at that point. 5. Two electric lines of force can never cross each other. If they do, then at the point of intersection, there will be two tangents. It means there are two values of the electric field at that point, which is not possible. Further, electric field being a vector quantity, there can be only one resultant field at the given point, represented by one tangent at the given point for the given line of force. C. P 2

6. lectric lines of force are closer (crowded) where the electric field is stronger and the lines spread out where the electric field is weaker. Q q 7. lectric lines of force are perpendicular to the surface of a positively or negatively charged body. Q > q 8. lectric lines of force contract lengthwise to represent attraction between two unlike charges. 9. lectric lines of force exert lateral (sideways) pressure to represent repulsion between two like charges.

0.The number of lines per unit cross sectional area perpendicular to the field lines (i.e. density of lines of force) is directly proportional to the magnitude of the intensity of electric field in that region. N A α. lectric lines of force do not pass through a conductor. Hence, the interior of the conductor is free from the influence of the electric field. Solid or hollow conductor No Field (lectrostatic Shielding) 2. lectric lines of force can pass through an insulator.

lectric Dipole: lectric dipole is a pair of equal and opposite charges separated by a very small distance. The electric field produced by a dipole is known as dipole field. lectric dipole moment is a vector quantity used to measure the strength of an electric dipole. p p = (q x 2l) l q q 2 l The magnitude of electric dipole moment is the product of magnitude of either charge and the distance between the two charges. The direction is from negative to positive charge. The SI unit of p is coulomb metre (C m). Note: An ideal dipole is the dipole in which the charge becomes larger and larger and the separation becomes smaller and smaller.

lectric Field Intensity due to an lectric Dipole: i) At a point on the axial line: Resultant electric field intensity at the point P is P = A B The vectors A and B are collinear and opposite. A = B = P = B A q (x l) 2 q (x l) 2 i i A B A B q O q P p l l P = P = x 2 p x 4πε 2 2 2 0 (x l ) P = B A 2 p x (x 2 l 2 ) 2 i P = P = q q [ ] 4πε (x l) 2 (x l) 2 0 2 (q. 2l) x (x 2 l 2 ) 2 If l << x, then P 2 p x 3 The direction of electric field intensity at a point on the axial line due to a dipole is always along the direction of the dipole moment.

ii) At a point on the equatorial line: Resultant electric field intensity at the point Q is Q = A B The vectors A and B are acting at an angle 2θ. A = B = q ( x 2 l 2 ) q ( x 2 l 2 ) The vectors A sin θ and B sin θ are opposite to each other and hence cancel out. The vectors A cos θ and B cos θ are acting along the same direction and hence add up. Q = A cos θ B cos θ i i B B B sin θ θ Q Q θ B cos θ θ Q A θ A cos θ Q y A θ θ B A A sin θ q O q p l l Q = 2 q l ( x 2 l 2 ) ( x 2 l 2 ) ½ q. 2l Q = 4πε0 ( x 2 l 2 ) 3/2 p Q = ( x 2 l 2 ) 3/2

Q = p ( x 2 l 2 ) 3/2 ( i ) If l << y, then Q p y 3 The direction of electric field intensity at a point on the equatorial line due to a dipole is parallel and opposite to the direction of the dipole moment. If the observation point is far away or when the dipole is very short, then the electric field intensity at a point on the axial line is double the electric field intensity at a point on the equatorial line. i.e. If l << x and l << y, then P = 2 Q

Torque on an lectric Dipole in a Uniform lectric Field: The forces of magnitude p act opposite to each other and hence net force acting on the dipole due to external uniform electric field is zero. So, there is no translational motion of the dipole. However the forces are along different lines of action and constitute a couple. Hence the dipole will rotate and experience torque. Torque = lectric Force x distance t = q (2l sin θ) t = p sin θ = p x Direction of Torque is perpendicular and into the plane containing p and. SI unit of torque is newton metre (Nm). q 2l θ q θ t q p p q Case i: If θ = 0, then t = 0. Case ii: If θ = 90, then t = p (maximum value). Case iii: If θ = 80, then t = 0.

Work done on an lectric Dipole in Uniform lectric Field: When an electric dipole is placed in a uniform electric field, it experiences torque and tends to allign in such a way to attain stable equilibrium. dw = tdθ = p sin θ dθ θ 2 W = p sin θ dθ θ W = p (cosθ cos θ 2 ) 2 q q If Potential nergy is arbitrarily taken zero when the dipole is at 90, then P. in rotating the dipole and inclining it at an angle θ is Potential nergy U = p cos θ q 2l dθ q θ θ 2 q q Note: Potential nergy can be taken zero arbitrarily at any position of the dipole. Case i: If θ = 0, then U = p (Stable quilibrium) Case ii: If θ = 90, then U = 0 Case iii: If θ = 80, then U = p (Unstable quilibrium) ND