AP Chemistry Ch 5 Gases

Similar documents
Gases. A gas. Difference between gas and vapor: Why Study Gases?

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

Chapter 5. The Gas Laws

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3.

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Part One: The Gas Laws. gases (low density, easy to compress)

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 10. Gases. The Gas Laws

Chapter 10 Notes: Gases

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law.

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Section Using Gas Laws to Solve Problems

Gases and Kinetic Theory

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Chapter 10. Chapter 10 Gases

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

Properties of Gases. 5 important gas properties:

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Comparison of Solids, Liquids, and Gases

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Chapter 5 The Gaseous State

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Chapter 5 Gases and the Kinetic-Molecular Theory

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Although different gasses may differ widely in their chemical properties, they share many physical properties

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

Chapter 5. Gases and the Kinetic-Molecular Theory

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L)

Gases and the Kinetic Molecular Theory

Unit 8 Kinetic Theory of Gases. Chapter 13-14

Gases. Chapter 11. Preview. 27-Nov-11

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Pressure: WhaddIgotta know. The Laws. Some calculations

Chapter 5 The Gaseous State

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Warm-Up. 1)Convert the following pressures to pressures in standard atmospheres:

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

Centimeters of mercury

Gases: Units of pressure: the pascal(pa)(1 Pa = 1 N/m2 = 1 kg m-1

What we will learn about now

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All

Hood River Valley High

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

Unit 13 Gas Laws. Gases

Gases Over View. Schweitzer

Forces between atoms/molecules

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.

General Properties of Gases

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1

kpa = 760 mm Hg? mm Hg P = kpa

Chapter 11. Molecular Composition of Gases

The Gaseous State of Matter

Chapter 10. Gases. Characteristics of Gases. Units of Pressure. Pressure. Manometer. Units of Pressure 27/07/2014 P = F A

Gases. Pressure is formally defined as the force exerted on a surface per unit area:

UNIT 10.

Importance of Gases Airbags fill with N gas in an accident. Gas is generated by the decomposition of sodium azide, NaN.

AP Chemistry Unit 5 - Gases

The Kinetic-Molecular Theory of Gases

Fig Note the three different types of systems based on the type of boundary between system and surroundings.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

The Kinetic-Molecular Theory of Gases

Comparison of Solid, Liquid, and Gas

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5. Gases and the Kinetic-Molecular Theory

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP

Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases and Kinetic Molecular Theory

Properties of Gases. Properties of Gases. Pressure. Three phases of matter. Definite shape and volume. solid. Definite volume, shape of container

Ch10.4 Attractive Forces

the drink won t rise very high in the straw vacuum straw 1 atm drink

Transcription:

AP Chemistry Ch 5 Gases Barometer - invented by Evangelista Torricelli in 1643; uses the height of a column of mercury to measure gas pressure (especially atmospheric) Manometer- a device for measuring the pressure of a gas in a container The pressure of the gas is given by h [the difference in mercury levels] in units of torr (equivalent to mm Hg). a) Gas pressure = atmospheric pressure h b) Gas pressure = atmospheric pressure + h 1 mm of Hg = 1 torr 760.00 mm Hg = 760.00 torr =1.00 atm = 101.325 kpa Know these! SI unit of pressure is N/m 2 or Pascal (Pa) Boyle s Law 1st quantitative study of gases, 1600s. Pressure and volume are inversely related. P 1 = V 2 P 1 V 1 = P 2 V 2 P 2 V 1 Ideal gas- gas that obeys Boyle s law An ideal gas is expected to have a constant value of PV, as shown by the dotted line. CO 2 shows the largest change in PV, and this change is actually quite small. PV changes from about 22.39 L atm at 0.25 atm to 22.26 L atm at 1.00 atm. CO 2 acts the least ideally because it has the strongest intermolecular forces. It has the most electrons of the three gases shown.

Charles Law 1700 s The volume of a gas is directly proportional to Kelvin temperature V 1 = V 2 Temp must be in Kelvin!!!!!! T 1 T 2 (Remember that the only time we do not have to change temperature to Kelvin for a chemistry calculation is when we are using T) The volume of a gas at absolute zero is zero. Avogadro s Law Equal volumes of gases at the same temperature and pressure contain the same # of particles. For a gas at constant temp. and pressure, the volume is directly proportional to the # of moles of gas. Gay-Lussac s Law Pressure of a gas is directly proportional to Kelvin temperature P 1 = P 2 Temp must be in Kelvin!!!!!! T 1 T 2 Combined Gas Law P 1 V 1 = P 2 V 2 T 1 T 2 Peas and Vegetables on the Table Memory Trick! Ideal Gas Law Combining Boyle s, Charles, and Avogadro s laws we get PV= nrt. R = 0.08206 (L atm)/(k mol) (proportionality constant) Most gases behave ideally at pressures less than 1 atm. We can use the ideal gas law for all gas law problems by putting changing variables on one side and the constant on the other. Ex. If P&V change w/ others constant: P 1 V 1 = nrt and P 2 V 2 = nrt so P 1 V 1 = P 2 V 2 If V&T change with others constant: V 1 = nr and V 2 = nr so V 1 = V 2 T 1 P T 2 P T 1 T 2 Ex. The gas pressure inside an aerosol can is 1.5 atm at 25 C. Assuming that the gas is ideal, what would the pressure be if the can were heated to 452 C?

Ex. A quantity of helium gas occupies a volume of 16.5 L at 78 C and 45.6 atm. What is the volume at STP? Ex. Many gases are shipped in high-pressure containers. If a steel tank whose volume is 50.0L contains O 2 gas at a total pressure of 1550 kpa at 23 C, what mass of oxygen does it contain? Molar Volume = 22.42 L of an ideal gas at STP (Some gases behave more ideally than others.) STP = 0 C and 1 atm Ex. CaH 2 reacts with H 2 O to produce H 2 gas. CaH 2 (s) + 2H 2 O(l) 2H 2 (g) + Ca 2+ (aq) + 2OH (aq) Assuming complete rxn with water, how many grams of CaH 2 are required to fill a balloon to a total pressure of 1.12 atm at 15 C if its volume is 5.50 L? Molecular Weight and Density of a Gas n = mass so P = mrt MW V(MW) Since m/v = density (g/l), P = drt MW MW = drt P Molecular Weight Kitty Cat Ex. Calculate the molar mass of a gas if 0.608g occupies 750 ml at 385 mm Hg and 35 o C. Dalton s Law of Partial Pressures For a mixture of gases in a container, the total pressure exerted is the sum of the pressures that each gas would exert if it were alone.

P tot = P 1 + P 2 + P 3 + P tot = n 1 RT + n 2 RT + n 3 RT + V V V P tot = n total (RT) (It doesn t matter what the gas is.) V Mole Fraction -the ratio of the number of moles of a given component in a mixture to the total number of moles in the mixture. is used to symbolize mole fraction. 1 = n 1 n 1 + n 2 + n 3 +... The partial pressure of a particular component of a gaseous mixture is the mole fraction of that component times the total pressure. P 1 = 1 (P total ) When gases are collected over water, we must adjust for the pressure of the water vapor. P H2O + P gas = P total Ex. If a 0.20 L sample of O 2 at 0 C and 1.0 atm pressure and a 0.10 L sample of N 2 at 0 C and 2.0 atm pressure are both placed in a 0.40 L container at 0 C, what is the total pressure in the container? Kinetic Molecular Theory of Gases-a simple model that attempts to explain properties of an ideal gas Gases consist of particles which have the following properties: 1. The particles are so small compared to the distances between them that the volume of the individual particles can be assumed to be negligible (zero). 2. The particles are in constant motion. The collisions of the particles with the walls of the container are the cause of the pressure exerted by the gas. 3. The particles are assumed to exert no forces on each other; they are assumed neither to attract nor to repel each other. 4. The average kinetic energy of a collection of gas particles is assumed to be directly proportional to the Kelvin temperature of the gas. Real gases don t conform to these assumptions!!! Kelvin temp. is an index of the random motions of the particles of a gas, with higher temp. meaning greater motion. KE (avg) = 3/2 RT R = 8.3145 J/K mol KE = 1/2 mv 2 Units are J/mol Remember that mass has to be in kg and velocity in m/s! Since we are working with energy, we need the energy R (8.3145), not the gas R (0.08206). Temp must be in Kelvin.

Real gases have many collisions between particles. The average distance a particle travels between collisions in a particular gas sample is called the mean free path. These collisions produce a huge variation in velocities. As temperature increases, the range of velocities is greater. Effusion and Diffusion Diffusion- mixing of gases This is called a Boltzmann Distribution graph Effusion- the passage of a gas through a tiny orifice into an evacuated chamber Graham s Law of Effusion -The rate of effusion of a gas is inversely proportional to the square root of the mass of its particles. Rate of effusion for gas 1 = MW 2 Rate of effusion for gas 2 MW 1 These calculations are not tested on the AP test. MW 1 and MW 2 represent the molar masses of the gases. -lighter gases effuse & diffuse faster than heavier gases Real gases *No gas exactly follows the ideal gas law. *A real gas exhibits behavior closest to ideal behavior at low pressures and high temperatures. Students also behave most ideally under these conditions. (Summer vacation!) At high temperatures, there is less interaction between particles because they are moving too fast. At high concentrations, gases have much greater attractive forces between particles. This causes particles to hit the walls of the container with less force (producing less pressure than expected). At high pressure (small volume), the volume of the particles becomes significant, so that the volume available to the gas is significantly less than the container volume. Attractive forces are greatest for large, complex molecules and polar molecules. We can use the Van der Waals equation to adjust for departures from ideal conditions. PV = nrt becomes: [P obs + a(n/v) 2 ]V-nb = nrt These calculations are not tested on the AP test. corrected corrected pressure volume